Recommendation-Based Evolvement of Dynamic
Schemata in Semistructured Information Systems

Wolfgang Gassler
Databases and Information Systems
Institute of Computer Science
University of Innsbruck, Austria
wolfgang.gassler@uibk.ac.at

ABSTRACT

Community-based collaborative information systems provide
the flexibility of storing information without having to ad-
here to any predefined, rigid schema. However, the stored
knowledge lacks common structure, which is crucial in terms
of data access and search capability. We present a novel con-
cept for semistructured information systems, which features
a dynamic and self-learning schema system and provides
the users with recommendations when entering information.
The recommendations ensure the creation and maintenance
of a common, homogeneous schema while at the same time
not restricting the user’s flexibility to enter any kind of in-
formation.

1. INTRODUCTION

When storing information, there are two common ways of
doing so: either one uses a (relational) database to store in-
formation in a structured way or one stores information in
a mostly unstructured manner.

The first approach is very well suited for applications which
have to store strictly structured information. Considering
the example of bank accounts, all information is structured
and can easily be matched into a schema for the storage of
e.g. bank accounts and their owners. A big disadvantage is
that a change within the schema can be very time-consuming
and complex, as it has to be done manually and the already
stored information has to be adapted to the new structure.
Therefore, the end-user is fixed to a given schema and can-
not insert additional information not matching the given
schema. For flexible information systems, such a restricting
approach is not very well suited, as it can result in a big
loss of information because of the fact that the user cannot
insert all information he might want to.

On the other hand, the second, unstructured way of storage
allows the user to store information in any arbitrary struc-
ture or format. This approach has the advantage that the
user does not have to match the data into some predefined
schema. A popular example of such flexible systems are wiki

GvD Workshop ’10, 25.-28.05.2010, Bad Helmstedt, Germany.

Eva Zangerle
Databases and Information Systems
Institute of Computer Science
University of Innsbruck, Austria
eva.zangerle@uibk.ac.at

systems, where information can simply be added as text.
However, such structureless storage prevents every possibil-
ity to provide structured access or search facilities on the
stored information, as for example relational databases do.
Consider the example of Wikipedia, which does not provide
structured search capabilities at all. The only way to search
through this unstructured information is to perform fulltext
search, which is incapable of answering precise queries like
“Which Austrian cities have between 10,000 and 20,000 in-
habitants?”. For this reason information repositories need
to support both structured and unstructured information to
fully exploit the advantages of both worlds, as also pointed
out by Weikum et al. [13]. Our paper presents the Snoopy
concept which combines the structured and unstructured ap-
proach and takes advantages of both concepts.

The rest of the paper is organized as follows. In Section
2 the basic concept of our approach is described. Section
3 outlines the measures taken for the creation of a common
schema. Our proposed solution is described in Section 4 and
related work is outlined in Section 5. Section 6 summarizes
the paper and points out open research issues.

2. THE SNOOPY CONCEPT

The Snoopy concept offers the same flexibility as wiki sys-
tems but at the same time provides the possibility to struc-
ture information like (relational) databases. This is achieved
by using a self-adapting and self-learning schema system and
recommendations, which support the user during the inser-
tion process.

In the Snoopy concept, information about a certain subject
is stored as a collection, similar to a wiki page. A collection
consists of an arbitrary number of key-value pairs, which can
be specified by the user without any restrictions. The fol-
lowing example shows how information about the city “Inns-
bruck” can be stored in a simple and understandable way:

Collection Name: Innsbruck

Country:Austria

State:Tyrol

number0f Inhabitants:117,916
Panoramalmage:pano_innsbruck_2010. jpg

The key-value pairs are similar to relational database columns
(keys) and its rows (values). Despite the fact that infor-
mation is still plain text, it still features structure. Such
semistructured data, where structure is present but does
not comply to a unified schema, can be used for structured



access (e.g. queries like “All entries containing the prop-
erty Country:Austria”). One of the main challenges of such
semistructured data is the proliferation of keys and values.
Furnas et. al. [6] showed that two people would choose
the same term for a certain object (within a restricted do-
main) with a probability of only 20%. Consider the key
“numberOfInhabitants”. It can be assumed that a multiuser
system would produce many synonyms of this word, eg. “in-
habitants”, “citizens” or “numberOflnhabitants”. This fact
would imply that the stored information is no longer search-
able in terms of unified access, as the keys are not aligned
to a common schema. Wikipedia also has to cope with
this problem of proliferation of structures and tries to solve
it by a very big and committed community, which creates
templates (schemata) and manually unifies already present
knowledge. Boulain et al. [3] showed that only 35% of all
edits in Wikipedia are changes of content. All other edits
are related to structure and do not concern the content it-
self.

The Snoopy concept takes a different approach and pushes
part of these structural adaptions to the user. The user
knows more about the collection he enters than any process,
machine or community, which try to enhance the informa-
tion after the author inserted it. Therefore, the key idea
of the Snoopy concept is to “snoop“ as much information as
possible from the user during the insertion process. Further-
more, the user is guided by an adapting, self-learning guid-
ance engine which provides recommendations to the user
based on key-value pairs entered earlier. These recommen-
dations support the user in aligning the information he in-
tends to enter to a commonly used schema.

It is important to note that all these recommendations are
just suggestions and the user is not forced to use these rec-
ommendations in any way. Therefore, the user is able to
enter information without any restrictions.

3. SCHEMA ALIGNMENT

The process of integrating and transforming two or more
(database) schemata into a common schema has proven to
be a very complex task [10]. The Snoopy concept avoids
any schema matching after the insertion of data as the guid-
ance of the user significantly contributes to the alignment of
the entered structured information to an already commonly
used schema. This aligned “schema” is different from a fixed
schema of a relational database to which information has
to be adapted to. The user is free to extend or modify the
recommended structure. Therefore, alignment can never be
done for the totality of data.

The self-adapting schema is implicit and dynamically cal-
culated based on already stored information. It consists of
keys which are used together by the majority of similar col-
lections. Hence, newly entered information can influence the
schema and can result in a change of the schema. For exam-
ple adding the key “numberOfStudents” to many collections
about cities can lead to a recommendation of this key to
further users.

As information systems contain information of various struc-
tures and types, the Snoopy concept automatically computes
a suitable number of schemata according to the stored infor-
mation - without any predefined settings. Schema alignment
in the case of the Snoopy concept can be achieved by taking
the following measures, which are all based on recommen-
dations of values and keys.

3.1 Suggestion of Keys and Structure

The suggestion of keys and structure is the most important
feature within the Snoopy concept. Considering a user enter-
ing information about cities (consisting of key-value pairs)
into the system, there might be additional useful keys that
the user might not think of at first hand. This is where
the recommendation engine comes into play. If a user wants
to add the key "inhabitants”, the system computes that 90
percent of the users who added “inhabitants” as a key, also
added “mayor”. The recommendation feature is based on
a data mining process within the already existing collec-
tions, which calculates keys that frequently occur together.
Having done these computations, the system suggests this
additional key to the user who can then accept this key and
enter a respective value. Assume, the user wants to store in-
formation about the city “Innsbruck”. Based on the already
inserted keys “country”, “state” and “numberOflnhabitants”,
the system recommends adding the keys “mayor” and “ZIP”.
Recommendations are simply further form fields displayed
to the user that give him the opportunity to enter appro-
priate values for the suggested keys. The recommendations
encourage the user to insert more information than originally
intended and thereby increase the amount of information in
the system.

3.2 Key Completion

When entering new key-value pairs, the user gets assistance
by an auto-completion system. This feature suggests keys
that are already stored in the information system, are sim-
ilarly structured and therefore semantically related to the
currently entered key. If the user types e.g. “number”, the
system automatically provides the user with the possibility
to choose “number of inhabitants” or “number of districts”,
which are keys that are already existent in the database.
The user still has the opportunity to provide a new key, e.g.
“number of universities” by ignoring the recommendations
and continue typing. This recommendation contributes to
the creation of a common schema and data basis and is
demonstrated by the following example. If the user wants
to enter the key “inhabitants”, after typing “inhab”, the user
is informed that a similar key “number of inhabitants” is al-
ready present. As accepting the recommendation is faster
than typing the word “inhabitants”, the user is encouraged
to accept the recommendation.

4. PROPOSED SOLUTION

Our proposed solution is mostly concerned with the compu-
tation of recommendations and the underlying storage mech-
anisms, which are explained in the following section.

4.1 Recommendations

The computation of the recommendations can be achieved
by using association rules [1], which can easily be adapted for
the mining of relations between triples: formally, a frequent
item set can be defined as a set of items I = {i1,%2,...in},
where a transaction 7' within the database consists of arbi-
trary many items of I. In the case of schema alignment, the
item set I consists of all properties p; occurring in the sys-
tem and a transaction comprises all properties p;; occurring
together within the subject s;. The set of all transactions
forms the transaction database T' = {711,7%,...Tm}. Based



on this transaction database, the goal is to calculate asso-
ciation rules which are implications X — Y, where X is a
property and Y is another property which co-occurs with X
on the same subject.

This is the basis of the calculation of recommendation can-
didates, which are then further examined in order to pro-
vide the best possible recommendations to the user. Based
on this (probably large) set of association rules, the final
recommendations are computed taking the following impact
factors into acount: (i) support of a rule, (ii) novelty of prop-
erties, (iii) recent popularity rise of properties and (iv) some
random choice to give new properties a chance to be used
and therefore rise in popularity.

Fundamentally, the computation process of the recommen-
dations has to fulfill the following requirements: (i) ability
to cope with huge amounts of data, (ii) compute recommen-
dation candidates based on mining association rules, (iii)
evaluation of the candidate sets according to the previously
mentioned factors and (iv) real-time calculation of recom-
mendations.

4.2 RDF Storage System

The underlying storage system is a crucial part of the appli-
cation as it holds all Snoopy data. Basically, the main task
is to store many key-value pairs belonging to a certain sub-
ject (collection). This pattern suggests storing this data as
triples using the W3C Resource Description Framework [8],
which has proven to be a modelling language very well suited
for the description of any (real-world) resource [9]. Basically,
every resource can be stored as a triple consisting of a sub-
ject (same as the collection name in the Snoopy concept), a
predicate (the respective key) and an object (the respective
value). The sentence “Innsbruck’s number of inhabitants
is 117,916” can therefore be stored as the following triple:
<Innsbruck>, <numberOfInhabitants>, <117,916>. The
main advantage of RDF is the possibility to easily model
knowledge in a machine-understandable way. SPARQL, the
query language for RDF, can be used to query all informa-
tion.

Basically, the underlying RDF storage system has to fulfill
the following requirements in order to ensure a scalable, ef-
ficient and highly performant system: (i) SPARQL support
to query all stored data in a fast and efficient way, (ii) op-
timized RDF store: triples have to be stored in the most
efficient and compact way as the representation of knowl-
edge as triples leads to a very large number of triples, (iii)
an interface optimized for data mining tasks, as SPAQRL
is not best suited for data mining (iv) fast data mining:
mining structure and content within the triples is the most
time-critical part of the application as all recommendations
are based on it.

4.3 Preliminary Results

SnoopyDB, a first prototype of the Snoopy concept has al-
ready been developed and evaluated in [7]. The evaluation
showed that recommendations in SnoopyDB guide the user
to common schemata and reduce the number of distinct
properties. A system without any recommendations lead
to 229 distinct properties on 50 test collections, whereas
SnoopyDB including recommendation and guidance was able
to store the same information by using only 154 distinct
properties. Besides the 33% smaller property set, the rec-

ommendation-based version motivated the test users to in-
sert 24% more key-value pairs.

S. RELATED WORK

The Snoopy concept can benefit from many research areas
which cover parts of the Snoopy concept. Lots of research is
done on how to introduce structure in Wikipedia or gener-
ally in information systems. All of the following approaches
try to enhance information after the insertion process, do
not consult the user and do not benefit from the user’s ex-
tensive knowledge during the insertion process.

The DBPedia project [2] extracts structured information
from Wikipedia infoboxes and stores it as RDF-triples. An-
other approach, YAGO [11] is also based on Wikipedia data
and tries to semantically enhance this data. The Kylin/KOG
System [14] automatically verifies semantically enhanced data
by explicit community feedback. Semantic Wikipedia [12]
extends MediaWiki by adding typed links between Wikipedia
entries as well as attributes and types. However, the user
is not guided in the process of specifying this additional se-
mantics. Cimple/DBLife [5] presents an approach to build
a structured community portal from already existing com-
munity sources. ExDB [4] extracts information from the
web, adds structure and is then able to query this data in a
structured manner.

6. CONCLUSION AND FUTURE WORK

We presented the Snoopy-concept, a novel approach for cre-
ating and maintaining a common schema in semistructured
information systems by using recommendations. These rec-
ommendations guide the user during the insertion process in
order to align the information to a commonly used schema
and vocabulary. The implicit schema is based on all stored
information in the system and adapts itself to the struc-
ture of this data. The recommendations are based on as-
sociation rules and were implemented in a prototype. First
results showed that recommendations ensure homogeneous
schemata and vocabulary in a multi-user semistructured in-
formation system and therefore improve the structured data
access capabilities. Further work will include ranking of
rules enabling the system to compute top-n recommenda-
tions aiming at a higher precision of recommendations. Fur-
thermore, capabilities to query the stored information effi-
ciently have to be introduced and the storage mechanisms
have to be improved.

7. REFERENCES
[1] R. Agrawal, T. Imieliniski, and A. Swami. Mining

association rules between sets of items in large
databases. In SIGMOD ’93: Proceedings of the 1993
ACM SIGMOD international conference on
Management of data, pages 207-216, New York, NY,
USA, 1993. ACM.

[2] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann,
R. Cyganiak, and Z. Ives. Dbpedia: A nucleus for a
web of open data. Lecture Notes in Computer Science,
4825:722, 2007.

[3] P. Boulain, N. Shadbolt, and N. Gibbins.
Hyperstructure maintenance costs in large-scale wikis.
In Peter Dolog, Markus Kroetzsch, Sebastian
Schaffert, and Denny Vrandecic, editors, SWKM,
volume 356 of CEUR Workshop Proceedings.



[10]

[11]

[12]

CEUR-~WS.org, 2008.

M. J. Cafarella, C. Re, D. Suciu, and O. Etzioni.
Structured querying of web text data: A technical
challenge. In CIDR, pages 225-234, 2007.

P. DeRose, W. Shen, F. Chen, A. Doan, and

R. Ramakrishnan. Building structured web
community portals: a top-down, compositional, and
incremental approach. In VLDB ’07: Proceedings of
the 33rd international conference on Very large data
bases, pages 399-410. VLDB Endowment, 2007.

G. W. Furnas, T. K. Landauer, L. M. Gomez, and

S. T. Dumais. The vocabulary problem in
human-system communication. Communications of the
ACM, 30(11):971, 1987.

W. Gassler, E. Zangerle, M. Tschuggnall, and

G. Specht. Snoopydb: Narrowing the gap between
structured and unstructured information using
recommendations. In Proceedings of the 21th ACM
Conference on Hypertext and Hypermedia. ACM, 2010.
G. Klyne and J. J. Carroll. Resource description
framework (rdf): Concepts and abstract syntax. W3c
recommendation, World Wide Web Consortium,
February 2004. http://www.w3.org/TR/2004/REC-
rdf-concepts-20040210/ .

B. McBride. The resource description framework (rdf)
and its vocabulary description language rdfs.
Handbook on Ontologies, pages 51-66, 2004.

P. Shvaiko and J. Euzenat. A survey of schema-based
matching approaches. Journal on Data Semantics,
4:146-171, 2005.

F. Suchanek, G. Kasneci, and G. Weikum. Yago: A
large ontology from wikipedia and wordnet. Web
Semantics: Science, Services and Agents on the World
Wide Web, 6(3):203 — 217, 2008. World Wide Web
Conference 2007, Semantic Web Track.

M. Voelkel, M. Kroetzsch, D. Vrandecic, H. Haller,
and R. Studer. Semantic wikipedia. In WWW ’06:
Proceedings of the 15th international conference on
World Wide Web, pages 585—594, New York, NY,
USA, 2006. ACM.

G. Weikum, G. Kasneci, M. Ramanath, and

F. Suchanek. Database and information-retrieval
methods for knowledge discovery. Commun. ACM,
52(4):56-64, 2009.

D.S. Weld, F. Wu, E. Adar, S. Amershi, J. Fogarty,
R. Hoffmann, K. Patel, and M. Skinner. Intelligence in
wikipedia. In Twenty-Third Conference on Artificial
Intelligence (AAAI’08), 2008.



