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ABSTRACT
Over the last years, music consumption has changed fundamentally:
people switch from private, mostly limited music collections to huge
public music collections provided by music streaming platforms.
�us, the amount of available music has increased dramatically and
music streaming platforms heavily rely on recommender systems
to assist users in discovering music they like. Incorporating the
context of users has been shown to improve the quality of recom-
mendations. Previous approaches based on pre-�ltering su�ered
from a split dataset. In this work, we present a context-aware rec-
ommender system based on factorization machines that extracts
information about the user’s context from the names of the user’s
playlists. Based on a dataset comprising 15,000 users and 1.8 mil-
lion tracks we show that our proposed approach outperforms the
pre-�ltering approach substantially in terms of accuracy of the
computed recommendations.
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1 INTRODUCTION
Recently, we are facing a fundamental change in the way people
consume music: more and more people switch from private, mostly
limited music collections to public music streaming collections
containing several millions of tracks [23]. People increasingly do
not store music locally on CDs and hard drives anymore. Instead,
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they access millions of tracks o�ered by cloud-based streaming
services using various devices. To increase usability, streaming
platforms heavily rely on recommender systems to help users in
discovering music they like. Previous research has shown that the
context of a user (i.e., occasion, event or emotional state) plays an
important role for providing personalized music recommendations
[20, 22]. Kamalzadeh et al. [16] showed that people listen to di�erent
music during di�erent activities and found that people organize
tracks in their music collections by the intended use (i.e., working
or exercising). �is �nding is backed up by Cunningham et al. [10],
who found that people create playlists that are intended for certain
activities.

Over the last years, data for quantitatively validating these stud-
ies became available: music streaming platforms provide means for
“social playlist generation”—playlists that are shared among friends
or to the public. Particularly public playlists serve as an essential
new data source for music recommender systems. For Spotify1, a
popular music streaming service, all user-created playlists are pub-
lic by default2 and thus can be crawled using the Spotify API3. Pichl
et al. [27] propose an approach for clustering contextually similar
playlists by exploiting the names of these playlists. �e clusters
are then leveraged in a collaborative �ltering recommender system
(CF) with pre-�ltering [2], hence CF is applied to each cluster indi-
vidually. �us, the recommender system is applied to di�erent parts
of the dataset in isolation, a method that has drawbacks: the user
pro�les are split up among the di�erent clusters and thus, there is
no holistic view on the user. In addition, recommendation accuracy
substantially varies among clusters, as these are di�erent in size.

In this work, we follow up and complement the research of
Pichl et al. [27] by utilizing their proposed playlist aggregation
pipeline to implement a novel recommender system to overcome
the drawbacks of contextual pre-�ltering. Particularly, we are in-
terested in how contextual clusters may be leveraged for music
recommendations while ensuring that the drawbacks of the pre-
�ltering approach can be avoided. �erefore, we propose to make
use of Factorization Machines (FM) [28] that are directly able to
incorporate the contextual clusters extracted from the names of
playlists for the computation of recommendations.

In several empirical experiments using k-fold cross-validation
we show that our proposed factorization machine-based recom-
mender system outperforms context-agnostic recommender sys-
tems, pre-�ltering context-aware recommender systems as well

1h�p://www.spotify.com
2h�ps://developer.spotify.com/web-api/working-with-playlists/
#public-private-and-collaborative-status
3h�p://developer.spotify.com/web-api/
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as classi�cation-based context-aware recommender systems sub-
stantially in terms of recall, precision and the F1-measure. Our
experiments show that factorization machines are particularly ca-
pable of tackling the major issue of the pre-�ltering approach (i.e.,
spli�ing up the dataset). To foster reproducibility and repeatability,
we make both our code and data used publicly available by pub-
lishing our recommender system and the evaluation framework
utilized in this paper on GitHub4.

�e remainder of this paper is structured as follows. In the next
section, we focus on related work before presenting our recommen-
dation approach in Section 3. A�er that, we introduce the reader to
our conducted experiments aiming to benchmark di�erent recom-
mendation systems including our proposed recommender system.
In the subsequent sections, we present the results of the experi-
ments and discuss them in Section 5. Finally, we wrap up our work
in Section 6.

2 RELATEDWORK
We classify related work into two main �elds of research: context-
aware music recommender systems and approaches concerned with
leveraging new data sources for music recommendations.

It is widely agreed upon the fact that the user’s context improves
personalized recommendations [2]. �is is why we can see a shi�
from purely content- or CF-based approaches towards more user-
centric approaches incorporating the user’s context [33]. In the
�eld of music recommender systems, studies showed that users
o�en seek for music that matches their current context (i.e., occa-
sion, event or emotional state) [20, 22]. As for the di�erent types of
contexts, Kaminskas and Ricci [18] distinguish environment-related
context (location, time, weather), user-related context (activity, de-
mographic information, emotional state of the user) and multimedia
context (text or pictures the user is currently reading or looking at).
Examples for contextual information that is leveraged for music
recommendations are emotion and mood [4, 7, 11, 31], the user’s
location [3, 9, 17, 19] or recommending music ��ing to documents
on the web a user reads at the moment [8]. As for the integration
of contextual information into a recommender system, Adomavi-
cius et al. [2] classify approaches modeling the user’s context into
contextual pre-�ltering, contextual post-�ltering and contextual
modeling approaches. We consider the approach presented in this
work as a contextual modeling approach as we do not �lter the
input or output data of the system.

As for music recommender systems based on novel publicly
available data, Zangerle et al. [36] propose a music recommender
system based on association rules computed based on user listening
behavior extracted from #nowplaying tweets (tweets in which users
state which musical track they are listening to at the moment).
Moreover, context-aware approaches for music recommendations
that are based on information extracted from public data sources
have been proposed. Schedl and Schnitzer exploit #nowplaying
tweets enhanced with acoustic features extracted from 7digital5
and extract context information about these tracks by utilizing
a web search on the track and artist [34]. In [35], Schedl et al.
explore the use of geospatial information for a set of collaborative

4h�ps://github.com/dbis-uibk/MusicRecommenderEvaluator/
5h�p://www.7digital.com

pre-process playlist names (stem, lem-
matize, remove non-contextual terms)

compute k-Means clustering on tf-idf
vectors of playlist name lemmata

assign contextual clus-
ters to <user, track>-pairs

assemble <user, track, cluster>-
triples as input for FM

recommendation computa-
tion (Factorization Machine)

Figure 1: Pipeline for Computing Recommendations

�ltering approaches. Furthermore, also LastFM has been utilized
for analyzing the listening behavior of users [12, 32]. Pichl et
al. [27] extract contextual information from the names of playlists of
Spotify users and incorporate these in the process of recommending
tracks. �e work presented in this paper builds upon this approach
and aims to address the problems of the pre-�ltering approach
(as proposed by Pichl et al.) by using factorization machines. To
the best of our knowledge, this is the �rst factorization machine-
based recommendation approach for integrating contextual clusters
derived from playlist names into a music recommender system.

3 METHODS
In this section, we present our proposed recommendation algorithm.
First, we introduce the approach taken for computing clusters of
contextually similar tracks. In a next step, we present the proposed
recommendation framework, which leverages the information pro-
vided by these contextual clusters. Figure 1 depicts the overall
work�ow for the computation of music recommendations utilizing
contextual clusters.

As the approach taken for computing contextual clusters relies
on the work of Pichl et al. [27], we naturally utilize the same dataset
for evaluating our approach (and comparing it to the original ap-
proach). �is dataset contains 143,528 unique playlists created by
15,345 unique users who listened to 1,878,457 tracks in the form of
<user , track,artist ,playlist>-quadruples.

3.1 Playlist Aggregation and Cluster
Generation

In a �rst step, we compute clusters of contextually similar playlists
based on the context information extracted from the names of
playlists. �erefore, we follow the method introduced by Pichl et
al. [27], which we will shortly sketch in the following. As depicted
in Figure 1, we �rstly stem all playlist names and lemmatize the to-
kens in a �rst step. In a next step, we remove non-contextual terms

https://github.com/dbis-uibk/MusicRecommenderEvaluator/
http://www.7digital.com


Improving Context-Aware Music Recommender Systems ICMR ’17, , June 6–9, 2017, Bucharest, Romania

such as genre, artist and track names as well as general stop words,
as these do not contain any contextual information. We use the
resulting bags of lemmata describing each playlist to compute the
term frequency-inverse document frequency (tf-idf) [15] for each
bag of lemmata representing a playlist name. Using tf-idf, we rep-
resent each playlist as a vector containing the tf-idf weights. �is
allows us to compute playlist similarities by computing the pair-
wise cosine similarity of the playlist vectors. Using the computed
similarities, we span a distance matrix and �nally �nd contextually
similar playlists by applying k-Means to the playlists in the matrix.
As we evaluate our approach using the same dataset as Pichl et
al. [27], we set the number of clusters to k = 23, as proposed in
the original approach. In the next step, we integrate the contextual
clusters in the recommendation computation as presented in the
following section.

3.2 Recommendation Computation
Our proposed recommendation approach aims to provide track
recommendations for a given user in a given context. Particularly,
we aim to model users by the tracks they listened to and enrich this
information with the contexts in which each individual user has
listened to those tracks. For the given input dataset, we assume that
by adding a track to a playlist, the user expresses some preference
for the track. For means of simplicity, we will describe a user-track
interaction extracted from a playlist as “a given user listened to a
given track”. Furthermore, we infer from previous �ndings [10, 16],
that user create playlists to listen to the contained tracks in the
context speci�ed by the playlist name.

�e initial input dataset contains <user , track,playlist>-triples.
We transform this dataset into a set of<user , track, context cluster>-
triples by applying the clustering method presented in Section 3.1
and assigning each user-track pair with one of the 23 contextual
clusters in which the given user has listened to the given track.
By adding a fourth factor ratinд to the dataset, we transform the
recommendation computation task into a rating prediction task:
for each unique <user , track, context cluster>-triple, the ratinд
ri jk is 1 if the user ui has listened to the track tj in cluster ck .
Our dataset does not contain any implicit feedback by users (i.e.,
play counts, skipping behavior, session durations or dwell times
during browsing the catalog). �erefore, we cannot estimate any
preferences towards an item a user not listened to as proposed by
[13]. �us, for each <user , track, context cluster> combination
for which we cannot obtain a rating for, we assume the rating to be
r = −1 (as proposed by [13]). �e rating ri jk for each user ui , track
tj and cluster ck can now de�ned as stated in Equation 1. Although
there is a certain bias towards negative values as some missing
values might be positive, Pan et al. [26] found that this method for
rating estimation works well.

ri jk =

{
1 i f ui listened to tj in ck
−1 otherwise

(1)

To get a be�er understanding of the resulting dataset, we depict
a sample of the dataset in Table 1. Based on this dataset, we train
a classi�er that decides whether a user has listened to a track in a
contextual cluster or not. For this computation, we require a given
user, track and cluster as input.

As for the actual computation of recommendations, we opt for
factorization machines (FM) [28, 29], as these can be considered as
state-of-the-art recommendation approach and have been shown
to perform well for recommender systems [30]. FMs are a general-
ization of factorization models and allow to model interactions of
input variables in a lower-dimensional space (i.e., interactions are
mapped onto a latent features-space of lower dimension). As we
aim to exploit the interaction e�ects of users, tracks and clusters
with this recommender system, we chose to utilize a FM of the
order d = 2 modeling all single and pairwise interactions between
input variables as depicted in Equation 2.

r̂FM = w0 +
n∑
i=1

wixi +
m∑
i=1

m∑
j=i+1

〈 ®vi , ®vj 〉xix j (2)

Equation 2 shows that a FM computes rating predictions by
modeling a global bias (w0), the in�uence of the user, track as well
as the clusters (

∑m
i=1wixi ) along with the quadratic interaction

e�ects of those (
∑m
i=1

∑m
j=i+1〈 ®vi , ®vj 〉). However, instead of learning

all weights wi, j for the interaction e�ects, a FM relies factorization
to model the interaction as the inner product of low dimensional
vectors (〈 ®vi , ®vj 〉) [29].

To estimate the performance of the presented recommender sys-
tems we conduct a set of experiments as described in the following
section.

4 EXPERIMENTS
In this section, we introduce the experiments conducted to evaluate
the proposed approach and the baseline approaches aiming at an-
swering our research questions. We start with a description of the
dataset used for the evaluation before focusing on the experimental
setup and the evaluation measures.

4.1 Dataset
For our experiments, we apply the proposed clustering method on
the initial dataset and reshape the input dataset into a set containing
<user , track, context cluster , ratinд>-quadruples. We assign each
track in a playlist with a rating value as described in Section 3.2.
�e rating indicates whether a certain user listened to a certain
track in a certain cluster (r = 1) or not (r = −1). A fragment of the
dataset is shown in Table 1. �is excerpt shows that user 872 has
listened to track 250246 in contextual cluster 0, whereas user 911
has listened to track 250246 in context 2. �is dataset forms the
foundation for our experiments, which are presented in the next
section.

User Track Contextual Cluster r
872 309275 0 1
872 309275 1 -1
911 250246 0 -1
911 250246 0 -1
911 250246 2 1

Table 1: Dataset Fragment
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4.2 Baseline Recommender Systems
We compare our proposed FM approach to three baseline recom-
mender systems: a CF-based system, a SVD-based system and
a classi�cation-based system. To incorporate context informa-
tion in the CF- and SVD-based baseline approaches, we apply pre-
�ltering [2], where the computation of recommendations (CF or
SVD) is performed on each contextual cluster individually. I.e.,
we compute the recommendations on a sub-dataset of the dataset
restricted to a certain cluster. �e classi�cation-based system uses
the computed contextual clusters as an input feature to the classi-
�er. With those systems, we benchmark classical CF, approaches
facilitating latent features (considered as state-of-the art in recent
years) and a classi�cation-based approach against our proposed
factorization machine-based recommender system.

�e �rst recommender system to benchmark is a collaborative
�ltering approach [1]. �e idea behind CF is to recommend items
the k-nearest neighbors of a user interacted with. For determining
the nearest neighbors, we compute pairwise user similarities by
computing the Jaccard Coe�cient [14] of the set of tracks each of
the two users listened to. �us, we measure the number of com-
monly listened tracks in relation to the tracks both users listened to
as depicted in Equation 3, where we denote Si as the set of tracks a
user i has listened to.

Jaccardi, j =
|Si ∩ Sj |
|Si ∪ Sj |

(3)

�e second baseline recommender system is based on singular
value decomposition (SVD) [21]. SVD predicts ratings by extracting
a number of latent features from the user-item matrix R. In our
se�ing, this is a sparse matrix containing all the binary ratings ri j (cf.
Equation 1) of all users ui and the tracks tj they listened to. �ese
latent features, characterizing types of tracks, are computed by
factoring the user-item matrix R into two matrices U and V , which
represent the user and item factors. Hence, R is the cross product
of U and V (R = UV ′). We approximate U and V by minimizing
the error to the known ratings ri j using stochastic gradient descent
optimization (SGD) [21].

�irdly, we aim to compare our proposed approach with a class-
i�cation-based recommendation approach as the performed rec-
ommendation computation can also be considered as a one-class
classi�cation problem [26]. �erefore, we implement a random
forest classi�er [24] as it has two main advantages: �rstly, we only
have to tune one parameter: the number of trees [25]. Secondly, all
trees can be computed in parallel and the algorithm scales linearly
with the number of trees.

Furthermore, we compare all recommender system to a random-
choice baseline. �e assumption behind this baseline is that the
fundamental chances of guessing whether a track was listened by
a user (r = 1) or not (r = −1) is 50%. �us, the random baseline for
the precision measure is 0.5. �e same holds for RMSE and MAPE,
where the random baseline is also 0.5. For the recall measure we
cannot state a single baseline value, as recall is dependent on the
number of recommendations n as explained in Section 4.4 and
shown in Equation 8.

A detailed description of the evaluation is given in the next
section.

4.3 Experimental Setup
To evaluate the performance of the di�erent recommender systems,
we conduct a 5-fold cross-validation. �erefore, we randomly split
the dataset into �ve folds of equal size. Subsequently, we utilize
four folds as training data and the remaining fold as test data. �is
process is repeated 5 times such that every fold serves as test data
once. Due to the random selection of data for the folds, each fold
contains an arbitrary number of relevant and irrelevant items. �e
relevant items are tracks a user has listened to within a certain
cluster, whereas the la�er are items a user did not listen to at all
within a cluster.

For assessing the rating prediction performance of the di�erent
recommender systems, we compute the predicted rating r̂ for each
track in the current test set. Using the predicted ratings r̂ as well
as the actual ratings r in the test set, we compute the evaluation
measures as described in Section 4.4. �ese evaluation measures are
computed for each fold separately and before computing the mea-
sures, we perform a min-max scaling. For the results in Section 5,
we compute the average across all folds.

For evaluating the top-n recommendations performance, we sort
the result by the predicted rating r̂ and subsequently use the top-n
recommended tracks for the evaluation. We compare r̂ to the actual
rating r for the current user, track and cluster in the test set. For this
comparison, we assume all track recommendations with r̂ ≥ 0.5 as
relevant for the user in the given context and hence, r̂ = 1.

As for the learning method utilized for the FM, we make use
of Markov Chain Monte Carlo (MCMC) inference as proposed by
Rendl et al. [28]. Generally, we tuned each of the recommender
systems (except the random baseline), using k-fold cross-validation.
For the random forest classi�er, we train the random forest classi�er
with 1,000 trees. In preliminary experiments, we found that this is
a su�cient number of trees to get stable results. Similarly, in our
preliminary experiments we found that for CF, n = 30 and for SVD,
k = 50 are suitable parameter options.

4.4 Evaluation Measures
In this section, we elaborate on the evaluation measures used for
assessing the performance of the di�erent recommendation algo-
rithms.

For assessing the rating prediction task, we compute the di�erent
widely used error measures: root mean square error (RMSE) as
well as the mean absolute percentage error (MAPE) as stated in
Equations 4 and 5, where r̂ is the predicted rating and r the actual
rating as contained in the test set. For the results stated Table 2,
we compute the average error among all ratings ri in the test set.
Please note that for computing the error measures, we scaled the
predicted rating r̂ between 0 and 1 using min-max scaling to be
able to directly compare the evaluated approaches.

RMSE =

√∑n
i=1(ri − r̂i )2

n
(4)

MAPE =
1
n

n∑
i=1

����ri − r̂iri

���� (5)

For measuring the performance of the top-n recommendations,
we rely on recall, precision and the F1-measure. For computing the
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recall-measure, we have to classify the tracks in the test set into
relevant and non-relevant items. We consider an item as relevant, if
the user has listened to this track in a certain cluster and thus r = 1.
An item is considered as non-relevant for a given user if the user
did not listen to it in a given cluster and thus, r = −1. For a certain
user, a track can be relevant in certain clusters and simultaneously
not relevant in other cluster. In case of the FM-based recommender,
we have to transform the rating prediction task into a one-class
classi�cation task [26] on whether a given track relevant or not
relevant for a given user in a given context to be able to compute
the top-n measures. �erefore, we consider r̂ as 1 if the computed
probability that a user interacted with an item P(r = 1) is higher
than 50% as stated in Equation 6. As for the ranking, we rely on
the predicted rating for ranking the recommendations to be able
evaluate the top-n recommendations.

r̂ =

{
1 i f P(r = 1) ≥ 0.5
−1 otherwise

(6)

In Equations 7 and 8 we state how precision (P ) and recall (R) are
computed. Precision measures the number of true positives (TP) in
relation to the number of recommendations n, which is the number
of true positives plus the number of false positives (FP). We consider
all items where r = r̂ = 1 as true positives. In contrast, Recall
measures the ratio of true positives and the number of relevant
items in the test set (RIT). �ese relevant items are the items a
user has listened to in the given context and hence, have the rating
r = 1. �is recall computation implies that there is natural a cap of
the recall determined by the number of recommendations n. �e
maximum recall is n

RIT . Hence, a low number of recommendations
n naturally implies a low recall R.

P =
TP

TP + FP
(7)

R =
TP

RIT
(8)

For assessing the overall precision, recall and F1-measure of the
evaluated recommender systems, we compute the measures for
each individual fold and compute the average among all users in a
�nal step. We elaborate on the results of the presented evaluation
in the following section.

5 RESULTS AND DISCUSSION
Based on the evaluation setup and measures described in the pre-
ceding section, we assess the performance of the following rec-
ommender systems: a pure CF-based recommender system (CF),
context-aware CF with pre-�ltering (PR-CF) as proposed by Pichl et
al. [27], a SVD-based recommender system (SVD), a context-aware
SVD-based recommender system with pre-�ltering (PR-SVD), a
context-aware random forest classi�er-based recommender system
(RF) as well as our proposed context-aware FM-based recommender
system (FM). As outlined in Section 4.2, we consider the �rst �ve
recommender systems as baseline approaches to our FM-based
recommender. Additionally, we compare all recommender system
against the random baseline (RB).

As described in Sections 4.3 and 4.4, we evaluate the rating
prediction task and the top-n recommendations. Analogously to

the previous section, we start with discussing the rating prediction
before analyzing the top-n recommendations task.

Recommender RMSE MAPE
CF 0.921 0.424
Pre-�ltering CF 0.914 0.418
SVD 0.913 0.417
Pre-�ltering SVD 0.914 0.418
RF 0.520 0.209
FM 0.560 0.282

Table 2: Evaluation of the Rating Prediction Task (all
Tracks)

�e results of the rating prediction task applied to all items in
the test set are stated in Table 2. We �nd that with respect to the
rating prediction task, the presented classi�er-based context-aware
approaches (RF and FM) clearly outperform all other approaches.
RF and FM reach a RMSE of 0.520 and 0.560 and a MAPE of 0.209
and 0.282, respectively. �e proposed baseline approaches reach
RMSE values of > 0.9 and MAPE values of > 0.4. However, we
also observe that none of the algorithms outperforms the random
baseline of 0.5 w.r.t. RMSE (in contrast to MAPE). We lead this
back to the fact that as RMSE naturally is more sensitive to high
deviations between r and r̂ . Furthermore, the high error rate can
also be explained by the fact that there are far more tracks a user
did not listen to in a given cluster than tracks a user did actually
listen to in a given cluster (i.e., the underlying matrix is highly
sparse). �erefore, computing the error measures incorporating
all tracks in the data leads to results biased towards imprecise
rating predictions of low ranked (and hence, irrelevant) items. As
the majority of tracks within our dataset are not relevant for a
given user in a given context, evaluating RMSE and MAPE of all
tracks within the dataset naturally includes tracks are not relevant
for a user. Our recommender systems considers all tracks with a
predicted rating r̂ < 0.5 as irrelevant to the user and these tracks are
naturally not shown in the list of recommendations. We argue that
the error for tracks with ratings r̂ < 0.5 are irrelevant for ranking
the tracks on the recommendation list. To illustrate this bias we
repeat the experiment for all tracks the recommendation algorithms
consider as relevant for the user (i.e., tracks with a predicted rating
of r̂ ≥ 0.5 a�er the min-max scaling). �e results of this evaluation
are depicted in Table 3.

Recommender RMSE MAPE
CF 0.389 0.151
Pre-�ltering CF 0.143 0.021
SVD 0.366 0.177
Pre-�ltering SVD 0.939 0.927
RF 0.415 0.172
FM 0.380 0.221

Table 3: Evaluation of the Rating Prediction Task (relevant
Tracks)
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(a) Precision@n (b) Recall@n

Figure 2: Evaluation: Recall and Precision for n = {1 . . . 50}

When considering only tracks with a predicted rating of r̂ ≥
0.5, the results show that all algorithms except pre-�ltering SVD
outperform the baseline. �e SVD-based recommender system even
performs be�er than the RF-based one and slightly outperforms our
proposed FM-based recommender. Furthermore, in this scenario,
applying pre-�ltering to CF improves results.

However, we argue that for the use cases we discuss later in
this section, the top-n-recommendations evaluation is of higher
importance as a user-centric evaluation that measures the utility
of the top-n recommendations provided to the user is vital and of
higher importance than actual error rates. Particularly, we argue
that a top-n performance for low n is vital for users. Hence, we are
particularly interested in the performance of the proposed recom-
mendation approaches for lower n. Hence, not the precise rating
prediction is crucial but ranking the track, such that the most rele-
vant tracks for a user in a given context are listed within the top-n
recommendations. �is is, as the recommender system computes
the list by sorting all potential track recommendations descend-
ing by the predicted rating r̂ and returns the top-n tracks based
in this list. Amongst others, in the remainder of the this section
we empirically show the discrepancy between rating prediction
accuracy and top-n prediction accuracy: although the RMSE and
MAPE of CF is low, even lower than using RF, the performance
evaluated measuring the accuracy of the top-n recommendations
hardly outperforms the baseline.

For the presenting the results of the top-n performance evalua-
tion of the proposed recommendations task, we depict the precision-
and recall-curves in the Figures 2a and 2b for n = {1 . . . 50}. Aim-
ing at making the performance of the recommender systems easily
comparable, we integrated both, the precision- and the recall into
the F1 measure and plot the F1 measure in Figure 3. Figure 2b shows
that the FM, RF and SVD-based approaches perform substantially
be�er in terms of recall than the other baselines across all number
of recommendations n. Notably, the pre-�ltering SVD approach
performs worse than the random baseline across all n. As for pre-
cision (shown in Figure 2a) we detect a similar behavior. Again,
pre-�ltering SVD reaches substantially lower precision values than
the other approaches. Interestingly, the SVD approach performs
be�er than the pre-�ltering SVD approach and reaches values sim-
ilar to the random baseline. �e FM-based approach performs
substantially be�er than SVD and RF, followed by pre-�ltering CF.

When examining the F1 results in Figure 3, we consequently
observe that all approaches outperform the baseline approach for
n < 25. For n >= 25, only pre-�ltering SVD reaches F1 values lower
than the random baseline. Considering the precision and recall plots
of the algorithms in Figures 2a and 2b respectively, we observe that
pre-�ltering SVD performs poorly independent of the evaluation
measure. However, we also note that a recommender system based
on latent features computed via SVD provides accurate results and
reaches high recall values. From this, we derive that the implic-
itly computed latent features represent track-context associations.
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Figure 3: F1@n

Hence, pre-�ltering limits the amount of input data available for
computing latent features. Hence, we argue that pre-�ltering SVD
is not an e�ective approach for our recommendation task.

Moreover, we observe that all approaches besides pre-�ltering
SVD outperform classical CF. However, we have to note that CF
hardly beats the random baseline, for which we assume that the
chances to guess whether a track was listened by a user (r = 1) or
not (r = −1) is 50%. We lead this back to a lack of non-boolean
ratings as explicit ratings would allow a more precise computation
of the user similarity and hence, more precise recommendations.
We argue that this would improve the ordering of the tracks, which
is especially crucial for the top-n recommendation task.

Additionally our experiments show that contextual pre-�ltering
is bene�cial for CF. Pre-�ltering CF beats the random baseline by
a 46% higher F1-score, which con�rms the results of Pichl et al.
[27]. However, as we observe in Figures 2a and 2b, pre-�ltering
is only highly bene�cial for precision. �e obtained recall value is
slightly lower for the pre-�ltering CF approach than for standard
CF approach (-3,08%). We suspect two reasons for this: �rstly, pre-
�ltering computes recommendations based on parts of the dataset.
�is is bene�cial for the precision, as the number of recommendation
candidates is limited. However, this con�guration limits the recall.
Secondly, as we compute user similarities on a restricted amount
of data, not all similarities are captured which also possibly limits
the set of possible recommendations.

Finally, we note that our proposed FM-based recommender sys-
tem clearly outperforms all other approaches including SVD and
RF in terms of precision, whereas the recall behaves similar for the
three best approaches (FM, SVD and RF). We lead this behavior
back to the way recall is computed. For each algorithm, the tracks
are ordered by the predicted rating r̂ and hence, by the likelihood

of being relevant to a given user in a given context. Secondly, there
is a natural upper bound of the recall dependent on the number
of recommendations ( n

RIT ). As we sort recommendations by the
predicted rating r̂ evaluate the top-n tracks, the order of tracks
is essential. �e be�er an algorithm performs, the more relevant
items with r̂ = r = 1 are contained in the top-n recommendations.
�is ultimately results in a higher number of RIT, as we compare
the top-n recommendations to the actual rating value r . �is is why
the top-algorithms approach a recall of n/50.

Bollen et al. [6] addressed the problem of choice overload and
state that user satisfaction is highest when presenting the user with
top-5 to top-20 items—naturally assuming that the recommendation
list contains a su�cient number of relevant items for the user. �is
is why we state the results for a small number of recommendations
n in Table 4. Please note that we only list the top-3 algorithms here
(FM, SVD and RF).

Recommender F1@1 F1@5 F1@10 F1@20 F1@50
FM 0.93 0.94 0.94 0.94 0.95
SVD 0.73 0.80 0.80 0.80 0.80
RF 0.69 0.79 0.79 0.79 0.80

Table 4: F1-Measure for di�erent n

�e results in Table 4 show that for maximizing the user satisfac-
tion according to Bollen et al. [6], our proposed FM-based approach
clearly outperforms RF-based approaches (where we model the con-
text explicitly) as well as SVD-based approaches (where we model
the context-track associations implicitly via latent features). �e
FM model in Equation 2 depicts that the FM models the context
explicitly as part of the variable’s main e�ects:

∑n
i=1wixi and ad-

ditionally similar to the SVD approach implicitly in the pair-wise
interactions:

∑m
i=1

∑m
j=i+1 ®vi , ®vjxix j . Underpinned by an empirical

evaluation we argue that a hybrid approach combining regression
with two-way interaction e�ects, where the weights of these e�ects
are estimated via matrix factorization for classi�cation (as provided
by a factorization machine) is the best approach for context-aware
music recommendation in a se�ing similar to the one presented in
this work.

Summing up, in this work we show how contextual clusters can
be leveraged for context-aware music recommendations. We �nd
that contextual clusters can be leveraged for music recommenda-
tions without the drawbacks of the pre-�ltering approach either
by using a classi�er approach or by incorporating latent features.
Particularly, we �nd that by using Factorization Machines, the best
results regarding the accuracy of recommendations can be obtained.
Possible use cases for such recommender systems are (i) the gener-
ation of track suggestions during the playlist generation phase of a
user and (ii) “contextual browsing” which helps users discovering
music they like. For the �rst use case, the recommender system
can recommend tracks that are likely to be interesting to the user
that can be added to the currently curated playlist. �us, the rec-
ommender system presents tracks to the user, which similar users
added to contextually similar playlists. �e second use case, the
“contextual browsing”, is based on the �nding of Cunningham et
al. [10] that people browse music collections to discover tracks they
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like to listen to during di�erent activities or situations. A�er a user
selects a certain context (or the context is automatically inferred),
our recommender system can provide lists of interesting tracks for
this speci�ed context. �is use case is similar to the classical top-n
recommendation task we evaluated in Section 4.

6 CONCLUSION
In this work, we propose a novel approach for incorporating con-
textual clusters extracted from the names of user playlists for the
computation of context-aware track recommendations. Particularly,
we present a recommendation approach based on Factorization
Machines. We evaluate the prediction accuracy of di�erent rec-
ommendation approaches based on a dataset of 15,000 users. Our
k-fold cross-validations show that contextual clusters can indeed
contribute substantially to recommendation accuracy by relying on
either a classi�er-based approach or approaches facilitating latent
features. Particularly, the obtained results show that our proposed
factorization machined-based recommender system is able to out-
perform the baseline approaches substantially. We consider these
�ndings highly promising. Hence, in future work, we aim to eval-
uate di�erent FM-models and con�gurations. Particularly, we are
also interested in the use of higher order factorization machines [5].
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