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Abstract—Incorporating user characteristics and contextual
information has shown to be essential when it comes to per-
sonalized music retrieval and recommendation. To this end, the
current location of a user is often exploited. However, relying
solely on GPS coordinates neglects the cultural background of
users, which does not necessarily coincide with political borders.
In this paper, we analyze culture-specific music listening behavior
based on a dataset of 2,724 Spotify users, 62,104 distinct tracks
and 104,390 listening events by modeling users jointly via their
musical preferences and cultural characteristics. By applying
a density-based spatial clustering algorithm, we identify nine
clusters which reflect similar users regarding both their musical
preference and cultural background. Our findings show that
cultural aspects cannot be approximated by GPS coordinates
and that incorporating cultural characteristics allows for more
precise user characterization. Also, we observe that listening
patterns occur on two different levels: we observe country-specific
listening patterns as well as cross-country listening patterns that
span across several countries.

I. INTRODUCTION

Over the last decade, the way people consume music has

changed fundamentally. An ever increasing amount of music

is available and being listened to via streaming services and on

mobile devices. Given that most of the latter are equipped with

localization techniques, such as GPS, geolocalized listening

profiles are nowadays available for a substantial amount of

social media users who share their listening preferences and

habits via social media platforms like Twitter or Facebook

and streaming platforms like Spotify or Last.fm. At the same

time, the importance of considering user characteristics and

context to build personalized music retrieval and recommender

systems is widely agreed on (e.g., [1], [2]). The music items

retrieved or recommended by such systems are arguably

better tailored to the listeners’ needs than those uncovered by

traditional collaborative filtering or content-based algorithms.

While location plays an important role to describe a lis-

tener’s context, the use of raw GPS coordinates may be

misleading as they do not necessarily reflect differences in

culture. Even worse, exploiting GPS coordinates to model

similarity between listeners, which is key to build recom-

mender systems, leads to systems that are agnostic to cultural

characteristics as geographically close users might have a

very different cultural background. A common solution to this

problem is to map GPS coordinates to countries. However,

the underlying assumption that cultural groups coincide with

political borders neglects the ethnic fractionalization present

within and beyond many countries. Therefore, a measure that

integrates musical similarity and cultural similarity beyond

countries’ geographical borders is called for.

In this paper, we propose a novel approach to model listener

similarity by integrating two dimensions: (i) personal listening

habits mined from social media and described by acoustic

properties and (ii) cultural characteristics based on socio-

economic and cultural factors from a publicly available data

source. Employing this model, we subsequently address the

following research questions:

1) How can we find culture-specific music listening pat-

terns among users?

2) To which extent do a user’s musical preferences, a user’s

cultural embedding and a user’s geographical location

influence the proposed model?

3) What are the characteristics of the identified cultural

groups in terms of music taste?

Please note that while we evaluate the usage of GPS coor-

dinates for locating users precisely in comparison to utilizing

the user’s country (derived from GPS coordinates), we refrain

from going to the sub-country level regarding cultural and

socio-economic data at this stage, due to the sparsity of data.

We leave this for future work.

To the best of our knowledge, this is the first study modeling

user similarity based on two dimensions: (i) personal listening

habits and musical preferences and (ii) cultural characteristics

extracted from socio-economic data. We believe that our

findings in regards to culture-specific listening behavior can

advance music information retrieval and music recommender

systems as these allow for fine-grained characterization of

users and their preferences, therefore contributing to im-

proved personalization capabilities. Our analyses show that

a combination of a user’s cultural embedding irrespective of

country borders (as additional contextual information) and

his/her listening preferences contributes to a more precise

user characterization, while further complementing the user

profiles with GPS coordinates of the user’s location does not.

This implies that modeling a user’s cultural embedding is an

important facet of music information retrieval and that culture

can be hardly approximated by a user’s exact geolocation. As

for the resulting clusters, the characteristics of the identified
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cultural groups show that there are country-specific listening

patters as well as listening patterns that span across several

countries, each with distinctive characteristics both regarding

the cultural and musical dimension. We believe that this study

provides new insights for the development of culture-aware

retrieval and recommender systems as these allow for com-

plementing broader listening patterns with country-specific

listening patterns for countries where users exhibit particular

listening behaviors.

The remainder of this paper is structured as follows. Sec-

tion II introduces related work and Section III presents the

data underlying our analyses. Section IV details the methods

utilized for the analyses. Section V presents and discusses the

results obtained, while Section VI concludes the paper.

II. RELATED WORK

The work presented in this paper is related to location-

specific music information retrieval and music recommender

systems. There are several approaches that exploit places of

interest, where the idea is to recommend music that suits the

environment—in an emotional or cultural sense [3], [4]. Rich

sensory devices allow to map a certain location or a trace

of locations to a certain activity which can be exploited to

provide personalized music recommendations based on the

location of a user during the day [5] or even during driving a

car [6]. Also, there exist approaches based on user similarity

utilizing the geodesic distance between two users [7], where

the distance is subsequently incorporated in collaborative fil-

tering recommendation approaches. Furthermore, the cultural

distance of users can also be approximated by the country or

continent a user is located in [8]. The authors of [9] conclude

that if users listen to various different artists, the integration

of geospatial information is beneficial. In a later study, they

state that countries or continents as geographic entities do not

necessarily reflect cultural borders [7]. Moreover, visualizing

artist and genre distributions on interactive maps allows re-

searchers explore regional listening patterns [10].

Moore et al. [11] utilized probabilistic embedding methods

to capture a joint space of musical taste and geographic

information. The authors performed this analysis based on

the MMTD (Million Musical Tweets Dataset) by Hauger and

Schedl [12]. For the geographic dimension, they relied on the

city-level and for the musical (taste) dimension, they relied

on the artist level. This allowed them to analyze, for instance,

similarities of cities and artists. In the joint space, they find

a substantial segmentation of Brazilian, Southeast Asian and

American cities. Also, Moore et al. find that a segmentation

of genres is clearly visible in the joint space. Furthermore, by

applying k-means clustering on a higher-dimensional model

they found a very tight French-speaking cluster.

In contrast to the work by Moore et al., the approach

presented in this work enriches the analyses with detailed data

for both dimensions: we enrich the musical (taste) dimension

with content features for each of the tracks and also enrich

the geographical model with socio-economic data (on a per-

country level). We argue that while an embedding approach

allows for a direct comparison of elements (e.g., cities and

artists) in the joint space, our proposed approach yields a

joint representation of users in an enriched musical and

socio-economical space to further investigate the influence of

musical and socio-economical features on the similarity of

users.

We are not aware of any work aggregating music listening

preferences of countries based by their cultural—opposed to

geographic—distance and hence, locate a research gap here.

We believe that by understanding the cultural embedding of a

user, music recommendation and music retrieval approaches

can be improved as the gained understanding allows for

an improved user model which subsequently enables better

personalization.

III. DATA

For our analyses, we require information about: (i) music

listening behavior of users and their geolocation and (ii) cul-

tural characteristics of countries.

A. Listening Behavior

As the main data source, we use the Spotify playlist dataset

we gathered in previous works [13], [14] as one representative

of data gathered from streaming platforms. This publicly

available dataset contains 143,528 playlists created by 15,345

unique users who listened to 1,878,457 tracks. To detect the

location of users, we exploit that Spotify provides the means

to share the tracks a user is currently listening to on Twitter

(among other social media platforms) and that people often

send tweets containing geolocation information via their GPS-

enabled mobile devices. Consequently, we search for Spotify

user names on Twitter, which allows us to crawl geo-locatable

tweets of each user, using only exactly matching user names

to reduce the number of false positive matches. A second

measure applied to prevent false positives is comparing the last

#nowplaying tweets of the user (holding information about the

music the user listened to) to the contents of his/her Spotify

playlists. If we can find the according tracks in the playlists

of the user, we assume that we correctly matched the user’s

Spotify and Twitter handles. With this approach, we were able

to match 22.73% of all user names contained in the original

dataset. To map each user to a distinct position, we neglect

location shifts beyond the first decimal point of the longitude

and latitude values. By analyzing the GPS coordinates of the

tweets a user shares, we observe that 80% of the users in the

dataset constantly tweet from the same area (i.e., no location

shifts beyond the first decimal). To determine the location for

the remainder of users, we apply a majority voting approach

based on grid rectangles and consider the rectangle in which

most tweets were sent as the user’s location. We choose the

size of the rectangles as 11.1 km x 7 km, as these capture

changes of the first decimal of the GPS position. As a result,

we can determine a unique country for 2,872 of the 3,335

users and remove the remaining users from the dataset. We

could not determine a location for these users as some of the

coordinates are located above sea. This could have several
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Country Users Tracks TPU SD

United States 1,131 35,560 31.44 124.51
Spain 417 16,133 38.69 81.12
United Kingdom 279 8,708 31.21 84.62
Mexico 233 15,073 64.69 84.01
Netherlands 91 1,881 20.67 36.10
Sweden 84 2,031 24.18 41.65
France 73 1,533 21.00 27.98
Italy 61 2,963 48.57 102.86
Germany 48 1,441 30.02 47.70
Chile 35 4,406 125.89 174.28

TABLE I: Top-10 countries (TPU=tracks per user,

SD=standard deviation).

reasons: malfunctioning devices, devices sending fake GPS

coordinates or people tweeting while traveling on ships and

on airplanes. Furthermore, we restrict our dataset to countries

with listening events of at least 10 distinct users (a total of

25 countries). The resulting dataset contains 104,390 listening

events by 2,724 distinct users having listened to 62,104 distinct

tracks. The top-10 countries with respect to the number of

users are given in Table I.

While the dataset is rather small compared to other available

datasets (e.g., [15]), it nevertheless contains the necessary

information in sufficient volume. This is also backed by

the fact that we found statistically significant differences in

features of the different clusters using an analysis of variance

(ANOVA), cf. Section V.

As for modeling personal listening taste, we gather content-

based audio features for each of the tracks by querying the

Spotify API.1 These acoustic features are extracted from the

audio signal of the individual tracks and represent high-level

content descriptors for tracks. They include danceability (how

suitable a track is for dancing), energy (perceived intensity

and activity), speechiness (presence of spoken words in a

track), acousticness (confidence whether track is acoustic),

instrumentalness (prediction whether track contains no vo-

cals), tempo (in beats per minute) and valence (musical

positiveness conveyed). Except for tempo, all of these features

are given in the range [0, 1]. Audio features gathered via

the Spotify API have already been exploited by a number

of other analyses (e.g., [16]–[18]). Furthermore, in previous

work, we have already shown that these audio descriptors can

be exploited for clustering tracks based on their audio features

and subsequently, can contribute to improved context-aware

music recommendations [14], [19].

B. Cultural and Socio-Economic Data

To complement our model with cultural and socio-economic

characteristics of countries, we rely on the World Happiness

Report (WHR) [20]. We argue that people’s cognitive and af-

fective evaluations of their daily life and hence, their subjective

well-being [21] provide a good indicator for cultural aspects

as these have been shown to be directly influenced by cultural

1A description of the features and the API can be found at
https://developer.spotify.com/web-api/get-several-audio-features.

factors [22]. The WHR provides a set of aggregated measures

capturing the perceived happiness of 156 countries: gdp is the

real gross domestic product per capita; freedom measures the

freedom to make life choices, healthy life expectancy states

the healthy life expectancy at birth in the country, generosity

specifies whether people in a country are willing to spend

money to a charity; social support states if people have people

helping them if they need support (i.e., relatives or friends);

corruption and happiness measure the perceived corruption

and happiness of citizens.

IV. METHODS

For our study, we model a user’s personal music listening

behavior along with his/her cultural embedding in a single

feature vector. First, to model a user’s personal musical

preferences based on his/her listened tracks, we rely on the

acoustic features presented in the previous section. For char-

acterizing the musical preferences of each user, we compute

the arithmetic mean for each of the acoustic features of the

songs contained in the user’s playlists.

For the approximation of the cultural embedding of users,

we rely on the variables of the WHR as described in the

previous section. We add these variables to the feature vector

as we aim to find cultural listening patterns by computing

cultural similarity between users based on these variables. We

assume that these variables reflect cultural similarity better

than the mere geographic similarity.

Finally, to homogenize values across all variables, we per-

form centering and scaling such that all elements of the vectors

exhibit a mean of 0 and standard deviation of 1 for each of the

acoustic and cultural variables. The feature vector representing

a user then consists of two parts: a user’s individual music

preferences captured by acoustic features as well as the user’s

cultural embedding approximated by socio-economic aspects

extracted from the WHR. Employing this user model, we

cluster users based on their musical preferences and cultural

background and analyze the resulting clusters along their

characteristics.

To perform an exploratory data analysis, we obtain a two-

dimensional embedding which represents users in the joint 16-

dimensional feature vectors by applying t-SNE [23], a state-of-

the-art dimension reduction method. Ideally, the latent features

jointly represent the personal listening preferences and cultural

embedding of the user. To further analyze the influence of the

cultural and musical components of the user representation and

to select relevant features, we perform a Principal Components

Analyses (PCA) [24] complementary to the t-SNE dimension

reduction on the set of user representations.

To compute groups of users sharing common listening

patterns as well as a common cultural background, we rely on

Density-Based Spatial Clustering of Applications with Noise

(DBSCAN) [25]. In preliminary experiments we found that

this clustering method applied to the t-SNE dimensionality

reduced data provides the best results in regards to the variance

of the acoustic attributes, even better than applying DBSCAN
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PC/Dimension Explained Variance WHR AF

PC1 14.96% 92.81% 7.19%
PC2 11.36% 10.82% 89.18%
PC3 10.57% 84.84% 15.16%
PC4 9.41% 10.58% 89.42%
PC5 7.84% 18.82% 81.18%
PC6 7.54% 16.63% 83.37%
PC7 7.32% 13.34% 86.66%
PC8 6.27% 76.27% 23.73%

Sum 75.27% — —
Mean Impact — 40.52% 59.49%

TABLE II: PCA: Explained variance for WHR features and

acoustic features (AF); WHR and AF columns show loadings

of PC with respective dimension.

to the original feature matrix. As we aim to find cultural lis-

tening patterns across both underlying feature dimensions, we

naturally strive to maximize the variance of the acoustic fea-

tures between the clusters. The sum of all standard deviations

(SD) of all acoustical attributes for DBSCAN is SD = 4.25
compared to k-means (SD = 2.33) and spectral clustering

(SD = 3.62) and hence, we chose to utilize DBSCAN for

the clustering of users. We moreover use the maximization

of cluster variance for determining the DBSCAN parameters

minPts and ε. The first parameter, minPts, defines how

many points have to be within the range ε, such that those

points are considered as core points and form a cluster. Hence,

in our setting, minPts defines how many users have to be

grouped inside the range ε by DBSCAN to actually form

a cultural cluster. Accordingly, we tune the parameters of

DBSCAN by maximizing cluster variance and as a result, set

these parameters to minPts = 20 and ε = 2 for the given

dataset (cf. Section III).

V. RESULTS AND DISCUSSION

In the following section, we present and discuss the results

of our analyses. Firstly, we examine the impact of individ-

ual features on the clustering. Subsequently, we present the

results of the conducted user clustering. Next, we elaborate

on the results of a correlation analysis of the features of both

dimensions underlying our approach and discuss the patterns

that are characteristic for certain countries.

A. User Models and Impact of Components

Figure 1 shows a two-dimensional representation of all

users and their cluster assignments obtained by t-SNE with

a perplexity parameter of 60. This perplexity parameter can

be considered as the average number of neighbors and has to

be determined empirically. Preliminary experiments showed

that setting this parameter to 60 works best for reducing the

dimension of the dataset from 14 dimensions based on seven

acoustic and seven cultural features to two dimensions. From

the t-SNE projection depicted in Figure 1, we can observe

spherical groups of users (which is in line with our choice

of DBSCAN as a clustering method). Applying DBSCAN

provides us with a set of nine clusters and one additional group

PC/Dimension Explained Variance WHR AF GEO

PC1 13.78% 83.72% 5.76% 10.52%
PC2 10.24% 45.72% 38.38% 15.90%
PC3 9.99% 35.04% 55.10% 9.86%
PC4 8.34% 14.98% 84.63% 0.39%
PC5 7.49% 60.41% 12.63% 26.95%
PC6 6.96% 15.55% 80.93% 3.52%
PC7 6.68% 8.95% 87.13% 3.92%
PC8 6.49% 8.06% 87.80% 4.14%
PC9 5.95% 54.43% 13.92% 31.65%

Sum 75.92% — — —
Mean Impact — 36.21% 51.81% 11.87%

TABLE III: PCA: Explained variance for WHR features,

acoustic features (AF) and GPS coordinates of users (GEO);

WHR, AF and GEO columns show loadings of PC with

respective dimension.

PC/Dimension Explained Variance AF GEO

PC1 16.53% 95.63% 4.37%
PC2 13.78% 93.25% 6.75%
PC3 12.25% 18.93% 81.07%
PC4 11.41% 86.67% 13.33%
PC5 11.20% 73.36% 26.64%
PC6 10.69% 84.34% 15.66%

Sum 75.86% — —
Mean Impact — 77.94% 22.06%

TABLE IV: PCA: Explained variance for acoustic features

(AF) and GPS coordinates of users (GEO); AF and GEO

columns show loadings of PC with respective dimension.

of noise points, which we refer to as cluster 0 in the subsequent

plots.

To get a deeper understanding of the impact of the individual

cultural and acoustic features, we perform a PCA. As we are

interested in the influence of the cultural and acoustic features

and also aim to evaluate the suitability of GPS coordinates

for the localization of users (in contrast to mapping a user’s

GPS location to the country level), we perform PCA on a set

of different user models: (i) user feature vectors as described

in Section IV (holding cultural and musical features); (ii)

user feature vectors holding both cultural and musical features

complemented with longitude and latitude information of

the location of each user; (iii) user feature vectors solely

containing musical features and the longitude and latitude

information and hence, neglecting any cultural features in this

model.

For the conducted PCA, we set a minimum threshold of 75%

explained variance, which is reached between the sixth and

ninth PC depending on the model. In Table II we present the

PCs for the user model containing cultural and acoustic data

including the explained variance of each PC and the relative

loadings of the cultural and acoustic features reflecting the

feature’s impact. We observe that the mean impact across all

eight PCs of the WHR data is 41% and the mean impact of the

acoustic features is 59%. Table III presents the PCA analyses

for the user model complemented with GPS coordinates of
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(a) t-SNE jointly applied to cultural and acoustic features. (b) Countries and cluster assignments.

Fig. 1: Clustering results (same colors indicate same cluster assignments across all subfigures).

users. The average impact of cultural data (WHR) drops

from 41% to 36% as the users in the same country feature

the same WHR values and hence, a geographic similarity

is implicitly covered while it is now explicitly covered by

the mean impact of the GPS coordinates. I.e., the cultural

components act as a proxy in this scenario. The geographic

distance based on the GPS coordinates has an average impact

of 12%. This is, as part of the information is already implicitly

covered by the variables of the WHR. Particularly for small

countries it holds that users originating from the same country

have similar GPS coordinates and naturally, identical WHR

variables. To complement this analysis, we also apply a PCA

to a restricted dataset solely containing musical features and

GPS coordinates. This analysis aims at getting a deeper

understanding of the extent to which GPS coordinates may act

as a proxy and allow for approximating cultural information

in terms of user modeling. Therefore, in this analysis, we

neglect any cultural features. The results of this PCA are

shown in Table IV. We observe that in such a setting, the GPS

coordinates explain 22% of the variance. Therefore, we argue

that the geographic distance explains a substantially smaller

fraction of the explained variance in comparison to the WHR

data representing cultural aspects (41%). This is also reflected

in the relative loadings of the PCs shown in Tables III and IV:

In Table III, there is no loading in the geographic dimension

that substantially influences any PC. Although 27% in PC5

is not small, it is less than half of the variation explained

by the WHR (60%). In Table IV, solely PC3 is substantially

influenced by the geographic dimension.

To conclude, we argue that in the current form, where

cultural aspects are modeled on a country-level, adding a

geographic user similarity in terms of GPS coordinates does

not improve the result substantially. This is why we conduct

the main analysis on the dataset comprising WHR data and

acoustic features.

For examining the characteristics of the obtained clusters in

terms of musical taste and cultural characteristics, we provide

an interactive web interface which allows to compute clusters

based on various clustering algorithms and settings and to

interactively explore and visualize the obtained clusters and

their characteristics.2

In the following, we first discuss the results of the clustering

and subsequently focus on the individual characteristics of

culture-specific listening patterns across and within individual

countries.

B. Country Analysis

In the following sections, we present the results obtained

by applying the clustering method as described in Section IV.

We firstly focus on the assignments of users to clusters, then

look at the distribution of features among the clusters and

subsequently, elaborate on the correlation of cultural as well

as acoustic features and perform a deeper analysis of the

characteristics of the obtained clusters.

1) Country-Cluster Assignments: In Figure 1a, we depict

the clusters resulting from applying DBSCAN on the user

model containing both acoustic and cultural features. More-

over, we provide a world map depicting which countries

belong to which cluster in Figure 1b. We indicate user-

cluster assignments by individual colors in both subfigures.

For countries where users belong to several clusters, we apply

a majority vote, where the country is assigned to the cluster to

which most of its users belong. Here we can observe that, e.g.,

countries in Northern Europe mostly share similar listening

characteristics with Canada, the United States, and Australia.

Furthermore, we find a South American cluster, but Chile and

Peru forming own clusters.

2) Feature Distribution: To also get a deeper understanding

of the individual acoustic and cultural characteristics of all

clusters, we provide bar plots for all clusters in Figure 2.

Particularly, Figure 2a depicts the average cultural aspects of

the nine clusters detected and Figure 2b presents the average

acoustic features and their distribution across all clusters. By

2http://dbis-mcc.uibk.ac.at
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(a) Cultural characteristics of clusters.
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(b) Musical characteristics of clusters.

Fig. 2: Detailed characteristics of clusters.

applying an ANOVA analysis using the individual feature vec-

tors of the users in each cluster, we found that the differences

between cluster means (compute among the contained users)

are significant across all features (p-value < 0.01).

3) Feature Correlation and Cluster Analyses: To analyze

listening patterns based on the proposed user model, we

perform a correlation analysis of acoustic and cultural features.

Using Pearson’s correlation coefficient, we compare acoustic

and cultural features and depict the obtained results in Fig-

ure 3. Besides several low positive and negative correlations

between the acoustic and cultural features, we observe that

happiness correlates well with valence (correlation coefficient

ρ = 0.61). When inspecting clusters with respect to their

valence and happiness values using the segment charts in

Figure 2, clusters 1, 2, and 7 feature the highest values for

both of these features. Cluster 1 groups users from Argentina,

Brazil, and Columbia; cluster 2 groups users from Northern

Europe, the United States, and Canada, whereas cluster 7

solely contains Mexican users. Hence, these countries (stem-

ming from three different clusters) feature high happiness

values and tend to listen to high-valence music.

Besides valence and happiness, in Figure 3, we additionally

observe moderate correlation between healthiness and valence

with ρ = 0.46. This pattern is found mainly among user

in cluster 2 and hence found among users from Nothern

Europe. In other parts of the world we detect particularly high

danceability values, which surprisingly do not correlate with

happiness and only slightly correlate with valence (ρ = 0.11).

Danceability is particular high clusters 7 and 9. Cluster 7

contains users solely from Mexico, whereas cluster 9 solely

contains Portuguese users. Portuguese users have similar lis-
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Fig. 3: Correlations between cultural (y-axis) and acoustic (x-

axis) features across all clusters.

tening patterns as other western users, however additionally

consume music characterized by high danceability.

Focusing on the cultural dimension, we plot the cultural

characteristics of the individual clusters in Figure 2a. In

this analysis, we detect that cluster 2 (Northern European

countries, U.S. and Canada) features the highest values for

the gdp-feature along with high values for generosity, health,

and freedom. Generally, we observe these characteristics for

most western countries. In contrast, cluster 7 (Mexico) features

especially low values for social support and high corruption

compared to both cluster 1 (Argentina, Brazil, and Colombia)
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and cluster 2 (Northern European countries, U.S., and Canada).

Besides these cultural differences, we moreover observe differ-

ences in the acoustic features plotted in Figure 2b: compared

to cluster 2, cluster 1 features lower instrumentalness and

speechiness values. Cluster 7 is relatively similar to cluster 2

with respect to the acoustic characteristics, however, has lower

speechiness values. Along with that we find that cluster 2 fea-

tures the highest speechiness and instrumental values among

all clusters. Solely cluster 4 features similarly high values

for speechiness and instrumentalness. This cluster contains

user from France, Italy, Japan, and Spain. The slightly lower

speechiness and instrumentalness values are also accompanied

by lower generosity values. Furthermore, we see a strong

correlation between French and Japanese users based on the

cultural features (ρ = 0.91). While most of the feature values

differ (but correlate), we found similar values for freedom and

corruption. We argue, that in this special case, the variables of

the WHR represent cultural aspects where these two countries

appear similar, however, we assume that for Japan there exist

other cultural aspects where those countries differ, but are not

captured by the WHR.

Another interesting finding is the observation that high

speechiness values correlate strongly (ρ = 0.81) with high

freedom values in the dataset. We presume that clusters 2

and 4 containing western countries are characterized by a

culture where freedom is important and along with that, music

with high speechiness values and hence, mostly rap music is

popular and important. We detect a similar pattern for the

medium correlation between healthiness and instrumentalness

(ρ = 0.45): cluster 2 and 4 group countries, where instrumen-

tal music is more popular than in other countries (and clusters).

At the same time, cluster 4 (grouping European and Japanese

users) as well as cluster 2 (grouping Northern Europe users,

U.S., Canada, and Australia) are characterized by the highest

health values. In fact, cluster 2 is characterized by the highest

health values among all clusters.

4) Country-Specific Patterns: Besides looking at patterns

that span across countries as presented in the previous section,

we also aim to detect country-specific listening patterns.

Therefore, we have a deeper look at the clusters solely

grouping users of a single country, which can be considered

outliers, in the remainder of this section. Particularly, we are

interested in the features that make these countries stand out

and hence, form individual clusters.

Cluster 3, a cluster solely grouping user from Chile, exhibits

similar patterns to cluster 1 (grouping user from Argentina,

Brazil, and Colombia), besides 28% higher instrumentalness

values. Italian users are located in clusters 4 (4.92% of all

Italian users) and 5 (95.08%, respectively). In contrast to

cluster 4, where other European user are located, Italian

users in cluster 5 are characterized by lower tempo (-2.23%),

valence (-4.35%) and danceability (-2.41%) values. Cluster

6, containing users from Malaysia, is characterized by the

lowest acousticness values among all clusters, which are

13.17% lower than the mean computed. This is accompanied

by 10.42% lower instrumentalness values. Finally, Mexican

users form their own cluster and hence have their own music

listening pattern. The music listening behavior of Mexican

users is similar to the western cluster 2, but we observe 13.05%

lower speechiness values along with 5.32% lower acousticness

values.

C. Discussion

We consider our analysis still as early, as we are aware

of the fact that our findings based on Spotify users do not

necessarily represent the world’s music taste aside of music

streaming. Further, we note that the number of users analyzed

in this study is still limited and hence, naturally affects the

generalizability of our study. Nevertheless, the results of our

clustering approach, bringing together the cultural embedding

of a user with his or her musical preferences, suggests that

there exist several culture-specific music listening patterns. We

categorize those listening patterns into two groups: we observe

country-specific listening patters as well as cross-country

listening patterns that span across several countries. The latter

are not restricted to neighboring countries or continents, as

we see in the bias towards instrumental and rap music for

western countries reaching from Australia over Europe to the

United States and Canada or commonalities in the music

listening between Europe and Japan. Besides those cross-

country listening patterns, we find country-specific patterns,

for instance, the bias of Italian and Portuguese users towards

music with high danceability values.

Based on these findings, we are particularly interested in

analyzing cultural music listening patterns beneath the country

level. An analysis beneath the country-level would mitigate the

weakness of performing a majority vote to assign a country

to a cluster as well as allow a more fine-grained analysis of

cultural listening patterns, probably revealing regional listen-

ing patterns. Whereas analyzing regional listening patterns is

possible due to precise GPS coordinates, the cultural analysis

in contrast is challenging as we are not aware of a consistent

data source observing cultural aspects beneath the country-

level. Our analyses show, in contrast, that if cultural features

are leveraged on the country-level, the incorporation of precise

GPS coordinates is not beneficial. Besides a sub-country

analysis, it would be also interesting to look into optimizing

the user model: in the current approach, we use the arithmetic

mean of each individual acoustic feature for aggregating values

of each track, which implies the simplification that each user

follows a single, homogeneous listening pattern. Hence, our

analysis may benefit from a more comprehensive user model

revealing multiple listening patterns per user.

Our findings show that Japan and France feature a high

correlation based on cultural features. While might not seem

obvious, according to the socio-economic features contained in

the WHR data, the correlation holds. However, this also signals

that characterizing a user’s cultural embedding by WHR data

only does not fully capture the cultural background of users.

Therefore, we also aim to extend the description of cultural

embeddings with further characteristics to improve precision

in this regards in future work.
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Nevertheless, based on our findings, we argue that a music

recommender or retrieval system incorporating a user’s cul-

tural background allows for providing more fine-grained and

personalized results. We particularly consider the finding that

there are on the one hand clusters that span across multiple

countries, and on the other hand, clusters that only comprise

users of a single country as highly relevant. Furthermore, given

that cultural information explains 41% of the variance in our

dataset, therefore nearly as much as music content information

(59%), we argue that cultural information is an important

contextual variable that allows for better characterizing users.

We believe that these findings can contribute to providing

more personalized and culture-aware music recommendations

by integrating country-specific listening patterns and cultural

information.

VI. CONCLUSION

In this paper, we presented an analysis of culture-specific

music listening behavior of Spotify users. We model a user’s

listening behavior by aggregating the acoustic features of the

tracks the user has listened to and complement this information

with socio-economic and cultural information gathered from

the World Happiness Report. We find that the variance in our

dataset can be explained to 41% by cultural and to 59% by

musical features, which we believe is particularly interesting

due to the two levels on which a user may be characterized:

on a cultural level and on a musical level. These findings

stress the importance of incorporating cultural information as

a contextual variable into a music recommender system as

it allows for describing users and their characteristics more

accurately. Related to this, we could also show that the cultural

distance (or similarity) of users cannot be replaced or even

substantially improved by adding their exact GPS location.

To find cultural music listening patterns, we rely on the

DBSCAN clustering algorithm. We find a set of nine clusters

where each cluster is a group of countries which share

common music listening patterns and common culture-specific

characteristics. Also, we observe that some of these cluster

span across several countries and hence, group users located

in several different countries, who share common listening

behavior. On the other hand, we also find country-specific

clusters that contain users of a single country only.

Future work will include incorporating further data sources

as well as extending the set of features, particularly regarding

the cultural dimension. Furthermore, we aim to perform a more

fine-grained analysis on subcultures within countries.
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[12] D. Hauger, M. Schedl, A. Košir, and M. Tkalcic, “The million musical
tweets dataset: What can we learn from microblogs,” in Proceedings of

the 14th International Society for Music Information Retrieval Confer-

ence, 2013.
[13] M. Pichl, E. Zangerle, and G. Specht, “Towards a context-aware music

recommendation approach: What is hidden in the playlist name?” in
Data Mining Workshop (ICDMW), 2015 IEEE International Conference

on. IEEE, 2015, pp. 1360–1365.
[14] ——, “Improving context-aware music recommender systems: Beyond

the pre-filtering approach,” in Proceedings of the 2017 ACM on

International Conference on Multimedia Retrieval, ser. ICMR ’17.
New York, NY, USA: ACM, 2017, pp. 201–208. [Online]. Available:
http://doi.acm.org/10.1145/3078971.3078980

[15] M. Schedl, “The lfm-1b dataset for music retrieval and recommenda-
tion,” in Proceedings of the 2016 ACM on International Conference on

Multimedia Retrieval. ACM, 2016, pp. 103–110.
[16] C.-M. Chen, M.-F. Tsai, J.-Y. Liu, and Y.-H. Yang, “Using emotional

context from article for contextual music recommendation,” in
Proceedings of the 21st ACM International Conference on Multimedia,
ser. MM ’13. New York, NY, USA: ACM, 2013, pp. 649–652.
[Online]. Available: http://doi.acm.org/10.1145/2502081.2502170

[17] A. Schindler and A. Rauber, Capturing the Temporal Domain in

Echonest Features for Improved Classification Effectiveness. Springer
International Publishing, 2014.

[18] A. Goel, M. Sheezan, S. Masood, and A. Saleem, “Genre classification
of songs using neural network,” in International Conference on Com-

puter and Communication Technology. IEEE, 2014, pp. 285–289.
[19] M. Pichl, E. Zangerle, and G. Specht, “Understanding Playlist Creation

on Music Streaming Platforms,” in Proceedings of the IEEE Symposium

on Multimedia (ISM). IEEE, 2016.
[20] J. F. Helliwell, H. Huang, and S. Wang, “The distribution of world

happiness,” WORLD HAPPINESS, p. 8, 2016.
[21] E. Diener, “Subjective well-being: The science of happiness and a

proposal for a national index.” American psychologist, vol. 55, no. 1,
p. 34, 2000.

[22] U. Schimmack, P. Radhakrishnan, S. Oishi, V. Dzokoto, and S. Ahadi,
“Culture, personality, and subjective well-being: integrating process
models of life satisfaction.” Journal of personality and social psychol-

ogy, vol. 82, no. 4, p. 582, 2002.
[23] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,” Journal

of Machine Learning Research, vol. 9, no. Nov, pp. 2579–2605, 2008.
[24] S. Wold, K. Esbensen, and P. Geladi, “Principal component analysis,”

Chemometrics and intelligent laboratory systems, vol. 2, no. 1-3, pp.
37–52, 1987.

[25] M. Ester, H.-P. Kriegel, J. Sander, X. Xu et al., “A density-based
algorithm for discovering clusters in large spatial databases with noise.”
in Kdd, vol. 96, no. 34, 1996, pp. 226–231.

215


