
Towards a Context-Aware Music Recommendation Approach: What is Hidden in the
Playlist Name?

Martin Pichl, Eva Zangerle and Günther Specht

Databases and Information Systems
Institute of Computer Science

University of Innsbruck, Austria
firstname.lastname@uibk.ac.at

Abstract—New distribution channels like music streaming
platforms paved way for making more and more diverse music
available to users. Thus, music recommender systems got in the
focus of research in academia as well as industry. Collaborative
filtering-based recommender systems have been proven useful,
but there is space left for improvements by adapting this
general approach to better fit to the music recommendations
problem. In this work, we incorporate context-based informa-
tion about the music consumption into the recommendation
process. This information is extracted from playlist names,
which are analyzed and aggregated into so-called contextual
clusters. We find that the listening context plays an important
role and thus allows for providing recommendations reaching
precision values 33% higher than traditional approaches.
Hence, the main contribution of this paper is a new method that
extracts and integrates contextual information from playlist
names into the recommendation process for improving music
recommendations.

I. INTRODUCTION

Recommender systems gained more and more importance

in the last decades throughout various fields. Such systems

are applied for book, movie, hashtag or even friendship

recommendations, just to name a few. In this work, we

focus on music recommender systems, as the recommen-

dation of music or rather artists and tracks is nowadays

more important than ever: Due to the rise of the web,

new distribution channels emerged. Besides online stores

like iTunes, streaming platforms like Deezer or Spotify are

continually attracting more and more users. Those platforms

offer a variety of different music from which the users can

choose. In contradiction to traditional channels like the radio,

on those platforms users have the free choice, which means

they can freely decide when they want to listen to which

music. However, this wide variety of different music makes

it difficult for the users to find music they want to listen to

(at the moment).

As shown in previous research [1], [2], utilizing

#nowplaying tweets as a publicly available data source for

computing track and artist recommendations is a valuable

approach. #nowplaying tweets are tweets, where the users

explicitly state to which track they are listening to at the mo-

ment on the microblogging platform Twitter. Although addi-

tional information about the artist and track is available, e.g.,

by matching the tweets to a database like MusicBrainz, no or

only little information is available about the context of music

consumption. However, different contextual information, for

instance the geo-location [3], [4], the emotion and mood

[5], [6], [7] or a combination of various factors depending

on the domain [8] have been proven to be valuable for

better performance of music recommendations. Regarding

context aware recommender systems, there are two major

challenges that will be explained now: First, there is the

challenge of gathering contextual information and secondly

there is the challenge of integrating this information into the

recommendation process. Both challenges are tackled in this

work as described in the following.

For achieving the goal of improving collaborative filtering

recommender systems as presented in [1], [2], we first took

care of challenge 1 by creating an appropriate dataset. We

observe that playlist names, amongst others, often contain

information about the music consumption context: People

create playlists named “party”, “workout”, “my summer

playlist”or “christmas”, just to name a few. This finding is

congruent with the research by [9] and is the reason why

we decided to enrich the #nowplaying dataset by Zangerle

et al. [10] with playlist names. In particular, we focus on

Spotify users in the dataset, as we can crawl the playlist

names and the contained tracks for Spotify users via the

Spotify API. Secondly, we focused on challenge 2, how

to extract the context. The main idea in this work is to

create so-called “contextual clusters”. A contextual cluster

is a cluster that aggregates different playlists to a common

context. I.e., the “my summer playlist”, “summer 2015

tracks”, “finally summer” and “hot outside” playlists are all

clustered in the summer cluster. In short, we extract the

common listening context, which is hidden in the playlist

name. Finally, using this clustering technique, we are able

to tag listening events, which consist of a user, a track

and an artist with certain contextual clusters. Using this

tagged dataset, we show that creating contextual clusters

and incorporating them into the recommendation approach

is a valuable and promising way for building better music

recommender systems.

2015 IEEE 15th International Conference on Data Mining Workshops

978-1-4673-8493-3/15 $31.00 © 2015 IEEE

DOI 10.1109/ICDMW.2015.145

1360

Summing up, the two main contributions of this paper are

(i) a method to extract and aggregate contextual information

out of playlist names and (ii) an approach to integrate these

clusters into the recommender system. We show in the evalu-

ation part of this work that by using the presented methods,

we are able to improve the performance of collaborative

filtering recommender systems by at least 33%. Additionally,

in order to foster research in this field, we publish the playlist

dataset on our research website1.

The remainder of this paper is structured as follows: We

briefly present the used dataset and the creation of the dataset

in Section II. Afterwards, in Section III, we will focus on

the homogenization and aggregation process of the playlist

names to context clusters. This is followed by the description

of the recommendation approach and the description of the

experimental setup in Section IV. The results of the exper-

iments and potential use cases are discussed in Section V,

before we finally present our conclusions and an outlook for

future research in Section VIII.

II. DATASET

In this section, we introduce the reader to how we create

a dataset suitable for context-aware music recommender

systems.

For developing a recommender system that utilizes the

context of music consumption, we looked for a way to

extend the publicly available and up to date #nowplaying

dataset by Zangerle et al. [10] 1. As already mentioned in

the introduction, we know that playlist names often contain

the desired information. Furthermore, Spotify offers a public

API that allows us to request all playlists of a user (in case

they are public) along with the contained tracks. As huge

parts of the listening events in the #nowplaying dataset are

created via Spotify, we decided to combine both sources.

The detailed approach is described in the following.

In a first step, we restrict the dataset to users tweeting

via Spotify. This can be done, as in the #nowplaying dataset

the source is available. The source is the client that was

used to publish the tweet. Then we check if a Spotify user

exists with the exact same user name. If such a user exists,

we retrieve all the playlists of the user including the tracks.

In a second step, we validate the user by checking if all

the tweeted tracks are contained in the tracks retrieved from

Spotify. If this holds, the user is considered as a valid user.

We find, that users are tweeting only a small percentage of

the tracks which can be found on their playlists. Hence, out

dataset is less sparse than the original #nowplaying dataset.

Using this method we generate a “playlist dataset” con-

taining <user, track, artist, playlist>-quadruples. In con-

tradiction to the #nowplaying dataset, our dataset is much

smaller due to the restrictions, however we find that it is

much more dense. It contains 15,345 unique users who

1available at: http://dbis-nowplaying.uibk.ac.at

Table I
DATASET COMPARISON: NUMBER OF TRACKS PER USER

Dataset Min. 1st Qu. Med. Mean 3rd Qu. Max.

Playlist 1.0 88.0 334.0 702.8 790.0 186,196.0

#nowplaying 1.0 1.0 1.0 5.94 3.0 84,527.0

listened to 1,878,457 unique tracks by 276,848 unique artists

contained in 143,528 unique playlists. On average, each user

stores approximately 703 (SD = 2,092) unique tracks in his

playlists. From the five point summery of the datasets in

Table I we can see that we dramatically increased the number

of tracks per user. How valuable this newly created playlist

dataset is for research in the field of music recommender

systems is presented in the next sections.

III. CLEANING AND CONTEXTUAL CLUSTERING

As already mentioned in the introduction, we want to

extract and aggregate contextual information hidden in the

playlist names to meaningful information about the user’s

music consumption behavior. In this section, we describe

the whole process in more detail.

As we want to group similar playlists based on their

names using clustering, the first logical step is to homog-

enize playlist names. This is done using lemmatization.

Lemmatization is a technique to find the lemma of a given

word, which is the base form. We lemmatize our playlist

corpus using WordNet[11], a toolkit for natural language

processing (NLP). Furthermore, we exclude playlists, which

do not contain any additional (context-based) information.

These are mainly playlists named after artists, tracks or

genres. For this task we rely on AlchemyAPI’s entity recog-

nition. AlchemyAPI is a commercial semantic text-analyzing

tool. We are using AlchemyAPI, as our experiments showed

that its entity recognition works well with respect to tracks,

artists and genres. As the (cleaned) playlist names are rather

short, creating a meaningful distance matrix suitable for

clustering is difficult. We lessen this problem by finding

synonyms and hypernyms using WordNet for the lemmas,

which have been extracted in the first step. This enables us to

create a more expressive term frequency-inverse document

frequency (tf-idf) matrix, by using a bag of words describing

each playlist based on the derived lemmas, synonyms and

hypernyms.

In a next step, we aim to find clusters among the playlists.

For finding contextual clusters in the tf-idf matrix, we rely

on k-Means clustering. As k-Means requires the parameter

k ex-ante as an input variable, the number of playlist

groups, or rather clusters k, is determined in the training

phase of the recommender system. In the training phase

of the recommender system, we compute the within-cluster

sum of squares (WCSS) based on the tf-idf matrix as

a quality measure for the number of clusters k between

2 ≤ k ≤ 2 ∗√n
2 , where n is the number of playlists. This

is a valid quality measure, as minimizing the WCSS is the

goal of k-Means’s objective function [12]. The upper limit

1361

Figure 1. Within Clusters Sum of Squares (WCSS)

Figure 2. De-Trended Within Clusters Sum of Squares (ΔWCSS)

is based on the approximation rule by [13] for estimating

the number clusters k. As we (i) do not recognize the elbow

point in the WCSS-curve which can be used as an indicator

for the number of cluster k (see Fig. 1) [14] and (ii) aim

to determine k numerically, we used the following approach

for determining a good k: First, as we know that WCSS

declines with the number of clusters, we compute the first

order difference (ΔWCSS) to de-trend the WCSS curve [15].

The WCSS-curve is shown in Fig. 1 and the de-trended

curve is shown in Fig. 2. The de-trended WCSS curve can be

interpreted as the decline/increase of WCSS if k is increased

by 1.

In Fig. 2, besides ΔWCSS, also the mean of ΔWCSS,

which is subsequently referred to as ΔWCSS, is plotted.

The dashed lines are the ΔWCSS + /− the standard

deviation, which is referred as σΔWCSS . We determine k by

choosing the largest k for which it holds that ΔWCSS <
ΔWCSS − σΔWCSS . We assume that if the reduction of

WCSS is < WCSS−σWCSS , the clustering performance is

not increased significantly by increasing k. This assumption

is underpinned by a two-sample Mann-Whitney U test [16]

where the p-value is smaller than 0.01. Using the dataset

described in Section II, the optimal number of clusters was

determined as k = 34. After presenting our approach of find-

ing and generating meaningful contextual clusters, we show

how this approach can be incorporated in a recommender

system in the next section.

IV. RECOMMENDATION APPROACH AND EXPERIMENTAL

SETUP

In this section, we introduce the reader to our proposed

recommendation approach. We pursue a hybrid approach

utilizing collaborative filtering as well as the contextual

clusters presented in the preceding section.

As described in Section II, our dataset initially contained

<user, track, artist, playlist>-quadruples. After the clus-

tering process, we aggregated the playlists to contex-

tual clusters. Thus we have <user, track, artist, cluster>-

quadruples. As we do not have any content-based informa-

tion, we rely on collaborative filtering (CF) for computing

track recommendations. CF in general recommends items

the k-nearest neighbors of a user interacted with, but not

the user itself. Allocated to our setting, a CF-based system

recommends tracks the nearest neighbors of a user listened

to, but not the user itself and thus are new to the user.

This concept has already been proven to be useful in

such a setting [1], [2]. As the data set does not provide

any user ratings on tracks and artists, we use the Jaccard

Coefficient [17] in order to determine the user similarity

between two users as depicted in Equation 1, where Si is

considered as the set of all tracks the user i listened to.

Analogously, we consider Sj as the set of all tracks the user

j listened to.

Jaccardi,j =
|Si ∩ Sj |
|Si ∪ Sj | (1)

If a traditional CF approach would be applied to our

dataset, we would compute the similarity of the user we

want to retrieve recommendations for to all other users

in the dataset. Afterwards, we would recommend items

the k-nearest neighbors listened to and are new to the

user. However, as we know that various types of context-

based information can help to increase the performance of

music recommender systems and that the same users are

listening to different music in different contexts [5], [6],

[7], [8], we apply the presented CF approach separately to

each contextual cluster, containing <user, track, cluster>-

triples. In order to evaluate the performance of the presented

recommender system, we conducted an offline evaluation.

For this offline evaluation, we split the track listening history

of each user into a training- (Straining) and a testset (Stest)

by randomly removing 1
3 of the items. As the track listening

histories of the users differ in the size, we decided to

make the number of recommendations dependent of the size

of the testset. This avoids that users with a larger testset

have a higher chance of a hit during the evaluation if the

number of recommendations is kept constant. The number

1362

of recommendations is computed as depicted in Equation 2.

Srecs = p ∗ |Stest| (2)

During the evaluation the parameter p, which determines

the number of recommendations along with the size of the

testset, is varied between 0.1 and 1.0. Using this evaluation

setup, we are able to compute the precision metric as

depicted in Equation 3.

precision =
|Srecs ∩ Stest|
p ∗ |Stest| (3)

The numerator of Equation 3 is the number of items rec-

ommended which can be also found in the testset and are

thus considered as a hit. The denominator is the number

of recommended items. Thus, the precision is the ratio of

hits and recommended items. Besides the precision, also

the recall metric is computed as shown in Equation 4. For

computing the recall, all items in the testset are considered

as relevant. This assumption is made again due to the lack

of preference values in the dataset: We have no possibility

to distinguish between relevant and irrelevant tracks, i.e., by

using a rating or similar.

recall =
|Srecs ∩ Stest|

|Stest| (4)

As for the precision, the numerator of Equation 4 is the

number of hits. However, in this case the denominator is

the number of relevant items – or in other words – the size

of the testset. Due to this, if the number of recommendations

equals the size of the testset (p = 1.0), the precision equals

the recall.
In order to combine both metrics in one number, we

combined precision and recall into the Fβ-measure. The

exact definition of the Fβ-measure is stated in Equation 5.

We choose β as low as we put more emphasis towards the

precision rather towards the recall. To be precise, as β = 0.1,

we are putting 10 time more emphasis on the precision than

on the recall. This is, as we want to compute a short list

of recommendations to the user. According to [18], for this

task the precision is a suitable metric.

Fβ = (1 + β2) ∗ precision ∗ recall
(β2 ∗ precision) + recall

(5)

The results of the evaluation are presented and discussed in

the following two sections.

V. EXPERIMENTS AND RESULTS

In this section, we present the experiments we conduct in

this work. We compare three different recommender systems

(RS): RS1 (pure CF, no clustering), RS2 (top k-clusters) and

RS3 (top 12-clusters, pure CF for the other clusters).

RS1 is a classical CF-based recommender system and thus

can be seen as the baseline approach we want to compete.

For RS2, we compute and evaluate the average performance

Figure 3. Performance of Different RS

for a different number of top-clusters k. The top-clusters

are retrieved by ordering the clusters in descending order

by their precomputed performance. As already mentioned

in Section IV, this performance is measured using the F0.1-

measure. The results can be seen in Fig. 3. For RS3,

we compute the average performance for all clusters, for

which the precomputed F0.1-measure is higher than the F0.1-

measure of the baseline approach. This is combined with

the average performance of the minor clusters. As minor

clusters, we consider clusters, for which the F0.1-measure

is lower than the F0.1-measure of the baseline approach.

For the minor clusters, CF is not applied separately to each

cluster. Instead, we merge the minor clusters to one big

cluster. This is why RS3 is called a switching recommender

[19]. More details why we choose to evaluate this approach

are stated in Section VI.

In Fig. 3 we see the F0.1-measure computed as stated

in Equation 5 for a different number of recommendations.

As already explained in Section IV, the length of the user

profile and the percentage value p determines the number

of recommendations: This implies that the longer the user

profile the more recommendations are computed in order to

avoid biasing the performance positive with users that have

a long user profile.

Independent of the number of recommendations, reach-

ing from 10% (p = 0.1) to 100% (p = 1.0) of the

testset size (see Equation 2), we see that the presented

clustering approaches (RS2, RS3) clearly outperform the

baseline approach. We can also see that the different clusters

have a high variance among their performance: There are

contextual clusters that work extraordinarily good, i.e., the

clusters among the top-5 and top-10 are performing 3.7 and

respectively 2.9 times as good as the baseline approach.

However, there are also clusters that perform worse than

the baseline approach. This is the reason why the average

over all contextual clusters (RS2: top-all) performs 1.3 times

better. The average performance over all p values (F̄0.1-

1363

Table II
AVERAGE F̄0.1-MEASURE OVER ALL p

top-k F̄0.1-measure
F̄0.1,competitive

F̄0.1,baseline

top-1 0.6856 5.38

top-5 0.4679 3.67

top-10 0.3664 2.87

top-20 0.2367 1.86

hybrid 0.2275 1.78

all 0.1693 1.33

baseline 0.1275 1.00

measure) is stated in Table II. Our presented approach

delivers an at least 33% better performance than the baseline

and thus can be considered as a valuable approach. However,

the experiments have also shown that not all contextual

clusters deliver satisfying performance results. We elaborate

on reasons for this in the next section.

VI. DISCUSSION OF THE RESULTS

In this section, we discuss the evaluated recommender

systems of the preceding section in more detail, elaborate

on reasons for the different performance of different con-

textual clusters and finally state potential use cases for a

recommender system as the presented one.

The recommender systems RS2 and RS3 have been

evaluated after we observed that not all contextual clusters

are valuable for improving track recommendations. With

RS2, we show how good the different contextual clusters

work. The intention behind RS3 is to check the feasibility

of what is called a “switching recommender system” in

literature [19]: In our setting, such a recommender system

utilizes the contextual clusters in case they work good and

standard CF as a fallback for contextual clusters not valuable

for improving recommendations. For implementing such a

switching recommender system, we need to know ex-ante for

which contexts to switch. This is an open issue discussed in

the as part of future work in Section VIII. In this work, we

limit ourselves to investigate what is the reason behind con-

textual clusters with a unsatisfying performance. We observe

two main reasons: First of all, there are clusters clustering

playlists names like “. . . favorites . . . ”, “. . . random . . . ” or

“. . . playlist . . . ” and similar. Those clusters are naturally

not valuable for our recommender system, as those clusters

do not contain any additional (context-based) information.

Secondly, besides those clusters, there are also contextual

clusters without a common sense. It seems that there are

numerous contexts where people have a common taste, i.e.

christmas or summer and there are contexts where the music

consumption differs widely. Examples for the latter would

be music listened during a workout or during work. An

indication for this hypothesis can be seen in Fig. 3: Different

clusters have a rather different performance. Furthermore,

we computed the Pearson correlation coefficient between

the WCSS and the performance measures using the F0.1-

measure. A low WCSS value means that the clustering

for this cluster works good. One could expect that if the

clustering works good, the performance of the cluster is

good. In this case, the correlation coefficient should be

negative (low values for WCSS means high values for the

performance). However, this is not the case. The coefficient

is 0.15. This can be seen as another evidence that the music

homogeneity differs widely among different music listening

contexts. Additionally we checked if there is a correlation

between the numbers of users and the performance. A

Pearson Coefficient of −0.18 indicates that there is no

correlation.

After discussing reasons for clusters with unsatisfying

performance and before discussing how this problem can

be tackled in future work in Section VIII, we want intro-

duce potential use cases for a recommender system as the

presented one. Basically, we are considering two use cases:

1) Track Recommendation during Playlist Generation

2) Context-based Music Recommendations

Regarding the first use case, a possible implementation

could be a recommender system supporting the user during

the process of creating playlists. If a user creates a new

playlists or adapts it, we can compute the distance of

this playlist to the presented clusters and afterwards start

the recommendation of tracks which fit into the playlist.

The second use case is to recommender suitable music for

various situations of the users throughout the whole day. I.e.,

it would be possible the recommended “get up” music in

the morning and “driving” music on the way into the office

and “concentration” music during the workday. However, in

this case it would be necessary that the users specify their

activities or rather the “type” of music they want to hear.

VII. RELATED WORK

During the last decades (music) recommender systems

have been from interest. Thus, a lot of research concerned

with music recommendations is already present. There are

basically three approaches if we categorize recommender

systems regarding the input data or rather data sources

they are using: content-based (CB) recommender systems,

context-based (CXB) recommender systems and collabora-
tive filtering (CF) based recommender systems [19]. Besides

these, there are also various hybrid recommender systems,

exploiting different recommendation techniques and data

sources. A hybrid of the latter two recommender systems

(CF and CXB) is presented in this work. In contradiction

to the presented CF based approach, CB recommender

systems are concerned with item features. In general, they

use these features in order to find items, which are similar

to a certain item i. Those items are the recommendation

candidates for users interacted with item i. In case of music

recommendations, these features (amongst others) are based

on time and frequency characteristics of tracks [20]. Besides

pure CB approaches, there are also several pure CF based

approaches as presented in [1] and [2] and several hybrid

1364

approaches. [3] for instance combine a CF and CXB based

approach. In their work, the geolocation is exploited as

contextual information rather than playlist names as we do.

There are also hybrid recommender combining CB and CF

based approaches, i.e., the approach suggested by [21].

VIII. CONCLUSION AND FUTURE WORK

In this section we first briefly summarize our main find-

ings before we elaborate on future work in the second part.

We find that contextual information extracted from playlist

names is a valuable resource for improving music recom-

mender systems. We show that using our approach aggregat-

ing playlist names to contextual cluster and the incorporation

of those clusters into the recommendation process boosts

the performance of the recommender system by at least

33%. We further observe that not all contextual clusters

boost the performance. This is the issue where we focus

our future research on: Part of a future work will be to

find an intelligent approach to determine which contextual

clusters are valuable to music recommendations and which

clusters are negligible. This would enable us a “fallback” to

traditional CF or a CB method for certain contexts where

we know that our approach is inferior. Another vague idea,

related to “good” and “bad” clusters, is to further split

contextual clusters using content-based features. The main

idea behind is to tackle the problem of contextual clusters

where the music preferences differ widely: CB features for

instance can help us distinguish users preferring relaxing

music from user preferring fast during work. Related to this,

we are going to have a deeper look on the clusters itself

and how we can interpret them, i.e., the genre distributions

among the clusters might be interesting or the before-

mentioned CB analysis if certain item based features appear

frequently among certain contextual clusters.

REFERENCES

[1] E. Zangerle, W. Gassler, and G. Specht, “Exploiting twit-
ter’s collective knowledge for music recommendations,” in
Proc. of the 2nd Workshop on Making Sense of Microposts
(#MSM2012): Big things come in small packages, 2012.

[2] M. Pichl, Z. Eva, and G. Specht, “#nowplaying on #Spotify:
Leveraging Spotify Information on Twitter for Artist Rec-
ommendations,” in Proc. of First Intl. Workshop in Mining
the Social Web (Extended Proc. of the Intl. Conf. on Web
Engineering (ICWE 2015), 2015, in press.

[3] M. Schedl and D. Schnitzer, “Hybrid Retrieval Approaches
to Geospatial Music Recommendation,” in Proc. of the 35th
Annual Intl. ACM SIGIR Conf. on Research and Development
in Information Retrieval (SIGIR 2013), 2013.

[4] M. Schedl, A. Vall, and K. Farrahi, “User Geospatial Context
for Music Recommendation in Microblogs,” in Proc. of
the 37th Annual Intl. ACM SIGIR Conf. on Research and
Development in Information Retrieval (SIGIR 2014), 2014.

[5] B.-j. Han, S. Rho, S. Jun, and E. Hwang, “Music emo-
tion classification and context-based music recommendation,”
Multimedia Tools and Applications, vol. 47, no. 3, pp. 433–
460, 2010.

[6] S. Rho, B.-j. Han, and E. Hwang, “Svr-based music mood
classification and context-based music recommendation,” in
Proc. of the 17th ACM Intl. Conf. on Multimedia, 2009, pp.
713–716.

[7] L. Baltrunas, M. Kaminskas, B. Ludwig, O. Moling, F. Ricci,
A. Aydin, K.-H. Lke, and R. Schwaiger, “Incarmusic:
Context-aware music recommendations in a car,” in E-
Commerce and Web Technologies, ser. Lecture Notes in
Business Information Processing, C. Huemer and T. Setzer,
Eds. Springer, 2011, vol. 85, pp. 89–100.

[8] L. Baltrunas, B. Ludwig, S. Peer, and F. Ricci, “Context
relevance assessment and exploitation in mobile recommender
systems,” Personal Ubiquitous Comput., vol. 16, no. 5, pp.
507–526, 2012.

[9] S. J. Cunningham, D. Bainbridge, and A. Falconer, “More
of an art than a science: Supporting the creation of playlists
and mixes.” in Proc. of 7th Intl. Conf. on Music Information
Retrieval, 2006, pp. 240–245.

[10] E. Zangerle, M. Pichl, W. Gassler, and G. Specht,
“#nowplaying music dataset: Extracting listening behavior
from twitter,” in Proc. of the 1st ACM Intl. Workshop on
Internet-Scale Multimedia Management, 2014, pp. 21–26.

[11] G. A. Miller, “Wordnet: A lexical database for english,”
Commun. ACM, vol. 38, no. 11, pp. 39–41, 1995.

[12] J. Macqueen, “Some methods for classification and analysis
of multivariate observations,” in In 5-th Berkeley Symposium
on Mathematical Statistics and Probability, 1967, pp. 281–
297.

[13] K. Mardia, J. Kent, and J. Bibby, Multivariate analysis, ser.
Probability and mathematical statistics. London [u.a.]: Acad.
Press, 1979.

[14] C. M. Bishop, Pattern Recognition and Machine Learning.
Springer, 2006.

[15] D. Brillinger, Time Series: Data Analysis an Theory, ser.
Holden-Day Series in Time Series Analysis. Holden-Day,
1981.

[16] H. B. Mann and D. R. Whitney, “On a Test of Whether one
of Two Random Variables is Stochastically Larger than the
Other,” The Annals of Mathematical Statistics, vol. 18, pp.
50–60, 1947.

[17] P. Jaccard, “The distribution of the flora in the alpine zone,”
New Phytologist, vol. 11, no. 2, pp. 37–50, 1912.

[18] J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T. Riedl,
“Evaluating collaborative filtering recommender systems,”
ACM Transactions on Information Systems, vol. 22, no. 1,
pp. 5–53, 2004.

[19] R. Burke, “Hybrid recommender systems: Survey and ex-
periments,” User Modeling and User-Adapted Interaction,
vol. 12, no. 4, pp. 331–370, 2002.

[20] M. Schedl, E. Gómez, and J. Urbano, “Music information
retrieval: Recent developments and applications,” Foundations
and Trends in Information Retrieval, vol. 8, no. 2–3, pp. 127–
261, 2014.

[21] K. Yoshii, M. Goto, K. Komatani, T. Ogata, and H. G. Okuno,
“Hybrid collaborative and content-based music recommenda-
tion using probabilistic model with latent user preferences,”
in Proc. of the 7th Intl. Conf. on Music Information Retrieval
(ISMIR 2006), 2006, pp. 296–301.

1365

