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ABSTRACT

User models that capture the musical preferences of users
are central for many tasks in music information retrieval
and music recommendation, yet, it has not been fully ex-
plored and exploited. To this end, the musical preferences
of users in the context of music recommender systems have
mostly been captured in collaborative filtering-based ap-
proaches. Alternatively, users can be characterized by their
average listening behavior and hence, by the mean values
of a set of content descriptors of tracks the users listened
to. However, a user may listen to highly different tracks
and genres. Thus, computing the average of all tracks does
not capture the user’s listening behavior well. We argue
that each user may have many different preferences that
depend on contextual aspects (e.g., listening to classical
music when working and hard rock when doing sports) and
that user models should account for these different sets of
preferences. In this paper, we provide a detailed analy-
sis and evaluation of different user models that describe
a user’s musical preferences based on acoustic features of
tracks the user has listened to.

1. INTRODUCTION

In the last decade, the amount of tracks available on
streaming platforms has literally exploded. Users are sup-
ported in exploring and wading through these music col-
lections by means of personalization—mostly by recom-
mender systems that provide users with a list of tracks they
might like to listen to. Such personalization is central for
the success of streaming platforms as it eases the task of
discovering new and enjoyable music for users.

For music information retrieval (MIR) and particularly,
for personalization tasks in this context, modeling the mu-
sical preferences of users is naturally a central aspect. Yet,
user modeling for MIR and music recommender systems
(MRS) has hardly been investigated [4,32,33]. To this end,
music recommender systems have mostly been realized by
means of collaborative filtering (CF) methods [16] or more
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advanced factorization approaches [17], where recommen-
dations are based on interactions between users and items.
Such systems are agnostic to content features as recom-
mendations are computed based on the similarity of users
(or items) based on their co-occurrence in the listening his-
tories of all users. On the other hand, (the less adopted)
content-based recommender systems [22] compute recom-
mendations based on the similarity of content descriptors
of tracks. Also, hybrid recommender systems combining
CF- and content-based approaches have been proposed [7].

In the field of MIR, tracks are traditionally character-
ized by content descriptors—these range from detailed fea-
tures such as MFCCs [21] to high-level content descrip-
tors such as acousticness, tempo or danceability (e.g., pro-
vided by the Spotify platform 1 ). While these features
are widely used to characterize single tracks, for a user
model that captures the user’s preferences well, these fea-
tures have to be aggregated across all tracks the user has
listened to. To this end, Pichl et al. [30] utilized con-
tent descriptors of tracks for representing a user’s musi-
cal preference by computing the average acoustic features
across all tracks the user has listened to. They also find
that users create different playlists that feature different
acoustic characteristics—implying that these playlists cor-
respond to different sets of preferences of a user (which
may naturally be context-related) and stress the need for
more comprehensive user models to describe users’ musi-
cal preferences [30]. Similarly, Wang et al. [36] state that
people prefer different music for different daily activities.
Along these lines, we argue that users may exhibit differ-
ent preferences depending on the context and e.g., listen to
more energetic music when doing sports or calming mu-
sic when being at home [36]. These different preferences
cannot be sufficiently reflected in a model that averages the
characteristics of all the tracks a user listened to. In a prob-
abilistic user model, Bogdanov et al. [4] characterize a user
in a semantic feature space derived from low-level content
features by utilizing Gaussian Mixture Models.

In this paper, we build upon and extend these previous
works by proposing different user models to describe the
musical preferences of users based on content descriptors
of tracks. We perform a large-scale evaluation of these
models in a track recommendation task based on 8 million
listening events of 13,000 users. Our experiments show

1 https://developer.spotify.com/web-api/get-several-audio-features/



that utilizing a user model based on a user’s specific pref-
erences regarding different types of music (modeled prob-
abilistically by GMMs) complemented with a user’s gen-
eral musical preference achieves the best results. Our re-
sults show that in terms of recommendation quality, the
proposed models contribute to substantially improved rec-
ommendation performance. We believe that our findings
can contribute to improved user models for music recom-
mender systems and generally, MIR tasks.

The remainder of this paper is organized as follows.
Section 2 discusses related work and Section 3 presents
the features utilized and the dataset underlying our experi-
ments. Section 4 presents the user models proposed. Sec-
tion 5 details the experimental setup and Section 6 presents
the results of our study, which are discussed in Section 7.
Section 8 concludes the paper and discusses future work.

2. RELATED WORK

Generally, Schedl et al. [32, 33] note that the user and
his/her preferences are often not considered when it comes
to MIR and MRS tasks. Particularly, the authors lay out
that user modeling for such tasks has hardly been explored
and evaluated yet.

To this end, content descriptors have widely been used
in MIR and MRS. For similarity search, often a content-
based similarity measure is used for matching queries and
a music database [9, 20, 35, 39]. In the context of mu-
sic recommender systems, Yoshii et al. [38] propose a hy-
brid recommender system that combines collaborative fil-
tering via user ratings and content-based features modeled
via Gaussian Mixture Models over MFCCs by utilizing
a Bayesian network. Also, Liu [20] investigates differ-
ent distance metrics for content-based recommender sys-
tems. Recently, also deep learning-based hybrid MRS have
also been proposed [37]. In regards to user modeling for
MRS, Bogdanov et al. compute a user’s musical prefer-
ences by a set of exemplary tracks that the user enjoyed.
They model the user’s preference in a latent semantic space
based on a set of diverse content features and propose a
set of similarity-based recommender systems. One sys-
tem models a user by a Gaussian Mixture Model based on
the proposed semantic audio feature space. The authors
evaluated these recommender systems in a user experiment
with twelve users. As for musical preferences of users,
Pichl et al. found in a large-scale study of Spotify users
that music streaming users listen to different types of mu-
sic. Those types can be observed via k-means clustering
of content descriptors of tracks. They also found that users
organize their music in playlists based on these types and
stress the importance of more comprehensive user models
to describe users’ musical preferences [30]. Along these
lines, we specifically investigate user models that are solely
based on content descriptors. We propose six user models
and compare these in a large-scale offline study based on a
recommendation task comprising 13,000 users and 8 mio.
listening events.

3. DATASET AND FEATURES

The main data source used in our experiments is the pub-
licly available LFM-1b dataset [31], which provides the
full listening histories of 120,322 Last.fm users. For each
listening event (i.e., a certain user listening to a certain
track), information about the track, artist, album and user
is available. Besides the information contained within the
LFM-1b dataset, we also require content features to de-
scribe tracks. Following the lines of, e.g., [1, 25, 30], we
propose to rely on the Spotify API 2 to gather the follow-
ing content descriptors for each track:

1. Danceability describes how suitable a track is for
dancing and is based “on a combination of musi-
cal elements including tempo, rhythm stability, beat
strength, and overall regularity.”

2. Energy measures the perceived intensity and activ-
ity of a track. This feature is based on the dynamic
range, perceived loudness, timbre, onset rate and
general entropy of a track.

3. Speechiness detects presence of spoken words. High
speechiness values indicate a high degree of spo-
ken words (talk shows, audio book, etc.), whereas
medium to high values indicate e.g., rap music.

4. Acousticness measures the probability that the given
track is acoustic.

5. Instrumentalness measures the probability that a
track is not vocal (i.e., instrumental).

6. Tempo quantifies the pace of a track in beats per
minute.

7. Valence measures the “musical positiveness” con-
veyed by a track (i.e., cheerful and euphoric tracks
reach high valence values).

8. Liveness captures the probability that the track was
performed live (i.e., whether an audience is present
in the recording).

These features are high-level descriptors of the acous-
tic content of tracks. We argue that they are neverthe-
less representative and hence, the obtained results should
give a good impression on the differences of the user mod-
els. We expect our findings to also hold for more com-
plex and lower-level content descriptors such as e.g., Mel-
Frequency Cepstral Coefficients (MFCC) [21].

To obtain these features for all tracks of the dataset, we
apply the following steps: we perform a conjunctive query
for the <track, artist, album>-triples extracted from the
LFM-1b dataset using the Spotify search API 3 to gather
the Spotify URI of each track. This URI is subsequently
used to query the acoustic features API 4 . Finally, we add
tracks for which can obtain all required features to the
dataset 5

Since the set of tracks a user listened to may also con-
tain outlier tracks that may distort the user profile, we
propose to remove outlier tracks from this set by apply-

2 A detailed description of these features and the API can be found at
https://developer.spotify.com/web-api/get-several-audio-features/.

3 https://developer.spotify.com/web-api/search-item/
4 https://developer.spotify.com/web-api/get-several-audio-features/
5 Except for tempo, all of these features are given in the range of [0, 1]

and for tempo, we apply a linear min-max scaling.



Item Value

Listening Events (LE) 8,457,205
Users 12,995
Tracks distinct 965,293
Min. LE per User 1
Q1 LE per User 252
Median LE per User 478
Q3 LE per User 826
Max. LE per User 21,660
Avg. LE per User 650.80 (± 713.99)

Table 1. Dataset statistics.

ing the median absolute deviation (MAD) outlier detection
method [19]. We consider a feature value an outlier if it is
not within M ± a ·MAD, where M is the median of this
particular feature across all tracks of a user and MAD is
the median absolute deviation of these values. We consider
a value an outlier if it is not within within three MADs
around the median, setting a rather conservative threshold
a = 3 as proposed by [19]. Lastly, a track is considered
as an outlier in the list of tracks of a particular user if one
of its features is considered an outlier and consequently re-
moved from the user listening history.

Applying this procedure results in a dataset of 55,149
users, 394,944,868 listening events and 3,478,399 distinct
tracks. We randomly sample users from this dataset for
our experiments, where we require each user to have more
than 100 listening events to ensure that our user models
are representative. We present basic statistics about the
resulting dataset in Table 1. As can be seen, on average,
each user has listened to 651 tracks.

4. USER MODELS

In the following, we present the proposed user models to
capture user’s listening preferences. We specifically focus
on modeling users solely by acoustic features of tracks they
listened to and deliberately neglect other information that
could contribute to a user model (e.g., demographic user
aspects, cultural information or further contextual features
that might improve MRS and MIR performance).

4.1 Feature Space

Based on the users, tracks and their acoustic features
within the dataset, we perform the following steps prior to
the computation of the user models. Most of the proposed
models require clustering tracks based on their acoustic
features to find groups of tracks that exhibit similar fea-
tures. Given that we aim to perform a large-scale anal-
ysis of the proposed user models (we perform the analy-
sis on 8 million tracks and 13,000 users), these clustering
computations are computationally intensive. Hence, we
firstly perform a proximity-preserving dimension reduc-
tion on the input data by applying UMAP (Uniform Mani-
fold Approximation and Projection) [23]. Also, the use of
latent representations of elements in the musical ecosystem
(users, tracks, etc.) has been to be effective in MIR and

MRS tasks [18, 26, 27]. In our experiments, we compute
a 2-d latent representation of tracks for the computation of
user models. This allows us to inspect the resulting clus-
ters visually during the development of the user models
and, more importantly, reduces cluster computation time
substantially, which naturally permits better scalability for
larger datasets.

4.2 User Models

For modeling user preferences for musical tracks and their
characteristics, we naturally require models for both tracks
and users as we utilize a user’s model and compare it with
track models to find suitable similar tracks that may be rec-
ommended to the user.

As for modeling tracks and their characteristics, we rely
on their acoustic features (AF; e.g., danceability or tempo).
However, for users we require more sophisticated user
models, as these have to represent a possibly extensive and
diverse set of tracks and their characteristics to eventually
represent a user’s musical preferences. We propose user
models that are based on clusters of similar tracks and uti-
lize a user’s membership in these clusters (i.e., the fact that
user has listened to tracks that belong to a given cluster)
to get a fine-grained representation of the many faces of
the listening preferences of a given user. For determining
such clusters and computing the membership of tracks in
these clusters, we experiment with two approaches: (i) we
utilize k-means clustering to find tracks that exhibit similar
acoustic features and use the characteristics of these clus-
ters to characterize users; and (ii) we apply Gaussian Mix-
ture Models (GMM) [24] as these allow to model a track
by the computed probability density function regarding the
GMM’s components. Based on a track’s density functions,
we derive a set of GMM-based user models. Generally,
the idea is that based on these clusters or components, we
aim to model a user based on the characteristics of one or
multiple of these track clusters.

In the following, we describe the proposed user models
to capture the musical preferences of users. An overview
of the user models and the features used to characterize
users and tracks is shown in Table 2.

Content avg: In a baseline model, we utilize the eight
acoustic features of all tracks a user has listened to and
compute the average across all tracks of a user for each of
the features presented in Section 3. This allows us to de-
scribe a user with his/her average listening behavior, break-
ing a user’s preferences down into eight acoustic features.
Please note that in the remainder of this paper, we refer to
models as Content-models if the representation of the user
or a track relies on acoustic features.

Content avg, sd: This model is built upon the Content
avg model, which we extend by adding the standard de-
viation of each of the acoustic features across all tracks
of a user. We expect the added SD to mitigate the ef-
fects of averaging a large number of features that poten-
tially differ substantially as users may listen to music with
highly diverse acoustic characteristics. We again consider
this model a baseline that additionally quantifies to which



Model User Features Track Feat.

Content avg user AF avg AF
Content avg, sd user AF avg and SD AF

Content binary k-means avg. AF of single cluster AF
Content weighted k-means weighted avg. AF of clusters AF
GMM avg. densities of user’s tracks GMM densities
Content binary GMM avg. AF of single GMM comp. AF
Content weighted GMM weighted avg. AF of GMM comp. AF
GMM + Content avg, sd GMM and user AF avg and SD GMM, AF

Table 2. Overview of evaluated models (AF stands for
acoustic features, GMM for Gaussian Mixture Model and
SD for the standard deviation).

extent the user’s musical preferences vary regarding the
acoustic features of his/her listening history.

Content binary k-means: In this model, we rely on
the clusters computed by a k-means clustering of all tracks
within the dataset in the computed 2-d latent space. In a
next step, we attribute each of the tracks a user has listened
to a cluster and do a majority vote on the clusters to obtain
the cluster that holds most of the user’s tracks. We subse-
quently model a user using the characteristics of the cluster
that contains the majority of the user’s track. To represent
this cluster, we compute the average of the eight acous-
tic features of all tracks contained in the cluster and add
the according standard deviations. Single tracks are repre-
sented by its acoustic features. We consider this a rather
simple model as we assign the user to a single cluster and
hence, limit the model to a single preference scope.

Content weighted k-means: The previous model is
limited as it is restricted to a single preference scope. To
tackle this problem, we propose the Content weighted k-
means model in which we now aim to address multiple sets
of preferences of a user. Therefore, we again rely on the
k-means clusters, however, we compute a weight for each
cluster based on the number of tracks a user has listened
to in each cluster. Based on the user’s weights for each
cluster, we compute a weighted average for each acoustic
feature to represent the user, where each cluster is again
characterized by its average acoustic features and its stan-
dard deviation. Again, in this model each track is repre-
sented by its acoustic features.

GMM: In this model, we utilize a Gaussian Mixture
Model [24] for representing both the track and the user.
Therefore, we compute Gaussian components and repre-
sent a track by its probability densities regarding the GMM
components. For users, we compute the average proba-
bilities for each component across all of the user’s tracks
to model a user’s musical preferences by using the GMM
components. We consider this model a proxy, as it does not
directly utilize acoustic features to represent a track, but
the probabilistic assignments of a track to a set of groups
of tracks (components).

Content binary GMM: In contrast to the pure GMM
model, this model relies on content features instead of
probability densities to represent a user. Analogously to
the Content binary k-means model, we rely on GMM to
assign the user’s tracks to components. In particular, we
assign the tracks found in the user’s listening history to

GMM components. In a next step, we select the compo-
nent with the highest number of user tracks assigned to,
where we assign a track to the component with the highest
probability density for the track. The user is then modeled
by the characteristics of the selected component (again us-
ing the average and standard deviation across all acoustic
features of the tracks assigned to the component), whereas
each track is again represented by its acoustic features.

Content weighted GMM: This model is again analo-
gous to the content weighted k-means model. However, we
rely on a GMM to assign a user’s tracks to certain a com-
ponent as described in the previous model. Based on these
assignments, we analogously compute the weighted mean
and standard deviation for each acoustic feature for each
GMM cluster to represent a user and the characteristics of
tracks are captured by their acoustic features.

GMM + content avg, sd: In this model, we com-
bine the GMM components baseline model with the con-
tent avg, sd baseline model and hence, represent a user by
his/her component weights regarding the Gaussian Mix-
ture Model and further add the average and standard devi-
ation across all acoustic features of the user’s tracks. Sim-
ilarly, a track is represented by its GMM densities and its
acoustic features.

We also performed experiments on representing users
and tracks with cluster or component assignments only and
did an analysis of further combinations of the proposed
models. However, the results were below the evaluated
baselines and hence, we do not list these models here.

5. EXPERIMENTAL SETUP

We model the evaluation of the proposed user models as a
recommendation task, where we aim to obtain a ranked list
of tracks that are of interest to the user. For this task, we
rely on Gradient Boosting Decision Trees. Particularly, we
utilize the popular XGBoost system [8], a scalable end-
to-end tree boosting approach that has been shown to be
highly suited for recommendation tasks [2, 28]. For the
training phase of the tree, we set the training objective to
be the binary classification error rate (i.e., the number of
wrongly classified tracks in relation to all tracks classi-
fied, where tracks with a predicted probability of relevance
larger than 0.5 are classified as relevant for the given user,
and all other tracks are considered irrelevant for the user).
Please note that we deliberately chose a classification-
based recommendation approach and refrained from uti-
lizing more elaborate recommender approaches such as
context-aware matrix factorization [3] or tensor-based fac-
torization approaches [15] as we aim to focus on user mod-
eling aspects in this paper.

For the recommendation task carried out, we require
a rating for each track in the dataset to define whether a
given track was listened to and thus, considered relevant
for a given user. Hence, we add a binary factor rating
to the processed dataset: for each unique <user, track>-
combination, the rating ri,j is 1 if the user ui has listened
to track tj . Due to a lack of publicly available data, our
dataset does not contain any implicit feedback of users



(i.e., skipping behavior, session durations or dwell times
during browsing the catalog). This is why we cannot esti-
mate any preference towards a track a user not listened to
as proposed by [14]. Thus, we assume tracks the user has
not listened to as negative examples [14] and hence, assign
a rating of 0 to these tracks. Even though there is a certain
bias towards negative values as some missing values might
be positive, Pan et al. [29] found that this method for rating
estimation works well. To perform the proposed recom-
mendation task via classification, we require the dataset to
also include negative examples. Therefore, for each user,
we add random tracks the user did not interact with (i.e.,
tracks tj with ri,j = 0 for the given user ui) to the dataset
until both the training and test sets are filled with 50% rele-
vant and 50% non-relevant items. We chose to oversample
the positive class to avoid class imbalance and hence, a
bias towards the negative class.

Using the resulting data set, we train a XGBoost model
that performs a binary classification on the relevance of
tracks for a given users. We extract the probabilities un-
derlying the classification decision to rank tracks by their
probability of relevance in the recommendation task.

To evaluate the performance of the proposed user mod-
els in regards to recommendation quality, we perform a
per-user evaluation. Therefore, we use each user’s lis-
tening history and perform a leave-k-out evaluation (also
known as hold-out evaluation) [6, 10] per user. Based on
the dataset that now contains both positive and negative
samples for each user, we compute a hold-out set of size k:
along the lines of previous research [12, 13], we randomly
select 10 positive samples (tracks that the user has listened
to) and 100 negative samples (tracks the user has not lis-
tened to). These 110 tracks form the test set for each user,
whereas the recommender system is trained on the remain-
der of the dataset. We compute the predicted ratings for
the tracks in the test set and rank the track recommenda-
tion candidates w.r.t. the probability that the current track
belongs to the positive class in descending order. For our
experiments, we consider all predicted probabilities > 0.5
as a predicted interaction and thus, we consider these items
as relevant, all others as irrelevant and hence, not added to
the list of recommendations. 6

Based on the predicted ratings, we compute precision,
recall, and the F1-measure to assess the top-10 accu-
racy [11]. We evaluate the 10 top ranked tracks as too
many track recommendations might provoke choice over-
load and hence, is not feasible. The problem of choice
overload has been addressed by Bollen et al. [5] who state
that user satisfaction is highest when presenting the user
with Top-5 to Top-20 items—naturally assuming that the
recommendation list contains a sufficient number of rele-
vant items for the user. For assessing the overall precision,
recall, and F1-measure of the evaluated recommender sys-
tems, we compute the measures for each individual user
and compute the average among all users. For computing
the recall measure, all relevant items in the test set are con-

6 This distinction between the two classes is also utilized by XGBoost
for binary classification tasks based on logistic regression.

sidered, independent of the number of recommendations.
Thus, there is a natural cap for recall, namely the num-
ber of recommendations divided by the number of relevant
items in the test set.

For the tuning of XGBoost parameters, we did a pre-
liminary cross-evaluation aiming to optimize precision val-
ues for the proposed models and hence, set the number
of maximum trees to learn the models to 2,000. For all
other parameters, we relied on the default settings. For
the training and tuning of k-means and GMM for the cre-
ation of the user models, we performed the following steps.
For k-means, estimated the number of clusters by utiliz-
ing the elbow method based on the within-cluster sum of
squares. For the given dataset, we estimated the number of
clusters to be 5. For the GMM, we performed a training
phase based on expectation maximization and determined
the number of components using the Bayesian Information
Criterion (BIC), which resulted in a total of 9 components
for the GMM.

6. RESULTS

We present the results of our evaluation for a recommen-
dation list of size ten in Table 3 and in a precision-recall
plot depicted in Figure 1.

The best results are obtained by the GMM + Content
avg, sd model, reaching a precision@10 of 0.771 and a re-
call@10 of 0.427 and hence, achieving substantially higher
precision and recall scores than any other model. Compar-
ing the results of this model to the GMM model (relying on
solely the assignments to GMM components) and the Con-
tent avg, sd baseline model shows that those two models
individually perform substantially worse than when com-
bined. When inspecting the results of the GMM model,
we find that solely relying on the GMM density functions
does not suffice to represent a user’s musical taste. Partic-
ularly, all content-based GMM or k-means models achieve
higher performance when applied in isolation. However,
combining a simple content-based approach that provides
acoustic features regarding the user’s general preferences,
with GMM, provides us with a representative user model.
This suggests that the GMM model captures a user’s di-
verse preferences regarding the detected components and
hence, his/her distribution in preference towards specific
types of music, while his/her general preferences are cap-
tured by the average acoustic features and the according
standard deviation.

Model Prec Rec F1

GMM + Content avg, sd 0.771 0.427 0.632
Content k-means weighted 0.606 0.316 0.400
Content k-means binary 0.573 0.300 0.383
Content binary GMM 0.569 0.298 0.381
Content weighted GMM 0.569 0.298 0.381
GMM 0.231 0.122 0.226
Content avg, sd 0.161 0.089 0.241
Content avg 0.159 0.087 0.241

Table 3. Precision, Recall and F1@10, ordered by F1.



Our results also show that the user models based on
k-means clusters slightly outperform the methods based
on GMM components (1.8% in recall, 3.7% in precision).
Please note that for k-means we determined the number of
clusters to be five, whereas we created nine GMM compo-
nents (as described in Section 5). Our findings regarding
the number of clusters are also in line with previous analy-
ses on playlists [30], where the authors found that cluster-
ing the tracks within playlists into five clusters allows for
cohesive and homogeneous clusters.

The weighted k-means approach achieves better results
than the binary k-means approach. This seems natural as
the former incorporates the user’s membership in all clus-
ters, whereas the latter does a majority vote and utilizes the
resulting (single) cluster to characterize the user. However,
this does not hold for the GMM-based approaches. While
the differences between the weighted and binary k-means
approaches are marginal, for GMM there is no difference
between weighted and binary Content GMM.

The proposed baseline model Content avg achieves the
lowest values regarding recall, precision and F1. Adding
the standard deviation to this model hardly impacts the
results. We initially suspected that adding the SD to the
model may allow mitigating the effects of aggregating pos-
sibly highly different tracks as we aggregate across all
tracks of a user (regarding their acoustic features), how-
ever, this is not confirmed by our experiments. In pre-
liminary experiments, we also used different representa-
tions of clusters: while we now utilize the mean acous-
tic features and the according SDs, we also used only the
mean features. We found that the SD contributes only
marginally as the dispersion of tracks in regards to acous-
tic features is already captured by the individual clus-
ters/components and hence, the tracks contained in a sin-
gle cluster/component are more homogeneous. We also
experimented with models that utilize user-cluster assign-
ments for k-means, however, those models achieved in-
ferior results. In contrast, representing those clusters by
the average acoustic features across all contained tracks
seems to be representative. Combining k-means cluster
assignments with content-based models also lead to infe-
rior results, which we lead back to the fact that the GMM
probability densities provide more information than sheer
cluster-assignments.

Generally, we conclude that content features strongly
contribute to user models and that grouping tracks into
clusters (k-means) or components (GMM) and solely re-
lying on the assignment to those clusters or components
is not sufficient for a representative user model. Finding
groups of similar tracks to represent users by user-group
assignments via the tracks a user listened to is not expres-
sive enough. Naturally, utilizing content features allows
to compute higher-dimensional similarities between users
and their tracks (in our experiments, 8 dimensions) and
hence, a more fine-grained notion of similarity.
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Figure 1. Precision-Recall curves for all models.

7. DISCUSSION

We find that a GMM that captures the specific preferences
of a user towards a set of nine types of music (captured
by nine GMM components) complemented by the general
musical preference of a user (captured by the avg. acoustic
features of his/her tracks) provides the best results.

Regarding the limitations of this study, we note that the
content descriptors utilized are aggregated high-level fea-
tures. This allowed us to keep the feature space smaller and
to specifically focus on the user modeling aspects. Further-
more, this evaluation is solely based on aspects related to
the content of tracks and no further user-related aspects as
e.g., proposed by Schedl et al. [34]. Lastly, while the pro-
posed models characterize users based on their interest in
different clusters/components and hence, are able to build
more specific user models, we still represent each clus-
ter/component by the mean acoustic features of the tracks
contained, which naturally limits the user model’s speci-
ficity. However, we believe that our findings are a valuable
contribution to advance user modeling for MIR and MRS
and to foster further research in this direction.

8. CONCLUSION AND FUTURE WORK

We proposed and evaluated a set of user models for de-
scribing the musical preference of users by leveraging con-
tent descriptors of tracks the user has listened to. We find
that a GMM complemented by the user’s general musi-
cal preferences describes a user’s different musical pref-
erences best. We believe that our findings can contribute
to improved user models for music recommender systems
and generally, MIR tasks. In future work, we aim to in-
vestigate methods to combine the models evaluated by
e.g., ensemble methods. Furthermore, we aim to tackle
the problem that our current model still computes average
acoustic features across a large number of tracks.
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