
Recommending Structure in
Collaborative Semistructured Information Systems

Eva Zangerle Wolfgang Gassler Günther Specht
Databases and Information Systems

Institute of Computer Science
University of Innsbruck, Austria

{firstname.lastname@uibk.ac.at}

ABSTRACT
Semistructured data provides the users of a community-
based information system with the flexibility to store in-
formation without having to adhere to any predefined, rigid
schema. However, such flexibility needs to be used with cau-
tion as it can lead to a very heterogeneous data structure and
is therefore not feasible in terms of unified data access and
search functionality. We present an approach which avoids
such proliferation of substructures and provides the insert-
ing user with recommendations, which are responsible for
the creation of a commonly used structure. The presented
recommendation algorithm adapts the recommendations to
the stored information and its structure created by the com-
munity.

Categories and Subject Descriptors
H.3.5 [Storage and Retrieval]: Online Information Ser-
vices; H.4.m [Information Systems]: Miscellaneous

General Terms
Algorithms, Design, Human Factors, Experimentation

Keywords
Semistructured Data, Recommendations, Structure, Human
Interaction, RDF

1. INTRODUCTION
Storing information in an online, collaborative system is

often realized by wiki systems. These systems provide means
to easily add, modify and delete information, which does
not have to adhere to any predefined schema or structure.
In contrast, traditional (relational) databases are strictly-
structured. They would not be able to cope with such a
large amount of collaboratively created information with
very heterogeneous structures and schemata like for example
Wikipedia does. Nevertheless, strictly-structured databases

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
RecSys2010, September 26–30, 2010, Barcelona, Spain.
Copyright 2010 ACM 978-1-60558-906-0/10/09 ...$10.00.

provide the big advantage of structured access, which en-
ables complex query capabilities. Traditional wiki systems
only support full-text search which is not feasible for com-
plex queries such as “Which Austrian cities have more than
10.000 inhabitants and have a female mayor who has a doc-
toral degree?”. Weikum et. al. [10] observed that informa-
tion systems have to be able to support both structured and
unstructured data to combine the advantages of both worlds
and be able to answer such questions.
Semistructured data provides mechanisms for the combina-
tion of both unstructured and structured storage of data.
Such semistructured data features a structure without hav-
ing to specify a fixed schema. The most popular example is
RDF, which consists of triples containing a subject, a prop-
erty and a value. Infoboxes within Wikipedia articles are
perfect examples of such semistructured data, which can also
be extracted as RDF triples. These infoboxes are manually
created, tabular aggregations of the most important facts
within an article and consist of multiple properties and ac-
cording values. For example an infobox about New York
City contains the property-value pairs area metropolis:

468.9 sq mi and elevation: 33 ft. These property-value
pairs – together with the article URL itself – constitute
RDF-triples. Such triples are machine-processable, thus al-
lowing for structured access and structured queries.
The problem of collaborative semistructured information sys-
tems without any restrictions is the proliferation of substruc-
tures and schemata. Every single user has his own view of
structuring information and uses his own terminology. Fur-
nas et. al. [3] showed that two people would spontaneously
choose the same word for an object with a probability of
less than 20%. The proliferation of structures, schemata
and vocabulary results in a very heterogeneous schema and
therefore impedes a common schema, which is essential for
structured access and complex queries. Even Wikipedia has
to cope with this problem. According to Boulain et. al.,
only 35% of all edits within Wikipedia are related to con-
tent, whereas all other edits are concerned with the structure
of articles to avoid proliferation. Moreover, Wu and Weld
[12] showed that even schemata of template-based infoboxes
– which are supervised and enforced by the community –
are divergent and noisy. Wu and Weld evaluated Wikipedia
infoboxes and found that 25% of all templates have less
than five instances, 11% have only one instance. Addition-
ally, only 46% of all attributes are used by at least 15% of
template-instances. These facts imply that even with the
support of a huge commited community, the proliferation of
schemata within a multi-user system cannot be prevented.



We present the recommendation algorithm of SnoopyDB, a
novel information system, which is based on semistructured
data and is able to avoid the proliferation of schemata by
providing structure recommendations to the user during the
insertion process.
The remainder of the paper is organized as follows. Section
2 describes the basic Snoopy concept. Subsequently, the al-
gorithm for the computation recommendations is described
in Section 3. Section 4 covers the conducted evaluations.
Section 5 describes related work and Section 6 concludes
this paper with an outlook.

2. SNOOPY CONCEPT
The Snoopy concept [4] offers the same flexibility as wiki

systems but at the same time provides the possibility to
structure information like (relational) databases. In the
Snoopy concept, information about a certain subject is stored
as a collection, similar to a wiki page. A collection consists
of an arbitrary number of property-value pairs, which can
be specified by the user without restrictions of any kind. To
cope with the mentioned proliferation of structures in such
semistructured data, the Snoopy concept pushes the part
of alignment of data and schemata to the inserting user and
supports the user during the insertion and alignment process
using a self-adapting schema system and recommendations.
The Snoopy concept “snoops” as much information as possi-
ble from the user (structure, relations, semantics, etc.), who
has extensive knowledge about the subject and can therefore
resolve many issues on the fly during the insertion process.
One of the main parts of the concept is the structure rec-
ommendation algorithm, which adapts itself to the already
stored information in the system and guides the user in the
alignment process to a common, homogeneous schemata.

3. STRUCTURE RECOMMENDATIONS
The goal of structure recommendations is to provide the

user with appropriate property recommendations when adding
property-value pairs to a certain subject. Structure rec-
ommendations guide the user to apply an implicit, com-
mon schema and therefore enable a homogeneous schema
throughout the whole system. For the computation of these
recommendations all previously entered properties are taken
into account and common substructures, which consist of
multiple properties which are frequently used together on
the same subject, are detected. Consider the example of a
user entering information about cities. The property-value
pairs describing the name of the city and its mayor have
already been entered. Multiple other users, who already
entered information about cities, also used these properties
and additionally specified the population and elevation of
the respective city. Therefore, the recommendation mech-
anism provides the user with recommendations concerning
further properties, in this case e.g. the population and el-
evation of the city. Such a recommendation system points
the user to frequently used properties and – given the accep-
tance of such recommendations – leads to a common schema
within the subjects.

3.1 Definition
Recommendations are based on all already stored informa-

tion: Let P = {p1, p2, p3, ..., pn} denote the set of properties
and S = {S1, S2, S3, ...Sm} the set of all subjects defined

within the system. For each subject Si ∈ S , the set of
properties occurring within this specific subject is PSi

⊆ P ,
where

S

Si∈S PSi
= P . In our case, the recommendation to

add a certain property to a certain subject can be seen as
a collaborative filtering system, where for each subject Si,
recommendations of properties are computed based on all
subjects stored within the system.

3.2 Recommendation Computation
The computation of recommendations is based on all pairs

(pa, pb) where pa, pb ∈ P and both pa and pb occur within the
same subject Si. These pairs are stored as rules, which have
the form r = (pa, pb, c) and are contained in the set R. Such
a rule denotes that property pa and property pb co-occur on
c subjects. This way of storing pairs as rules eliminates du-
plicate pairs and provides a compact and fast storage facility.
Based on these rules, the recommended properties for a cer-
tain subject Si are computed by selecting a subset C ⊆ P
of property recommendation candidates by determining all
rules which feature properties occurring on the subject Si,
as shown in Algorithm 1. It is important to note that the
computation of recommendations is an iterative process –
as soon as a new property is added to the subject, rules are
created or updated based on this new set of properties.

Algorithm 1: Rec. Candidate Computation

Input: PSi
,R

Output: set C of all recommendation candidates for Si

C ← ∅

T ← ∅

foreach pi ∈ PSi
do

foreach (pa, pb, c) ∈ R do
if (pa == pi ∧ pb /∈ PSi

) then
T ← T ∪ {(pa, pb, c)}

end

end

end
foreach (pa, pb, ci) ∈ T do

if (∃(px, c) ∈ C, where px == pb) then
C = C\{(px, c)}
C = C ∪ {(px, c + ci)}

else
C = C ∪ {(pb, ci)}

end

end
return C

3.3 Ranking
The execution of the recommendation candidate compu-

tation algorithm listed in the previous section results in a
set of recommendation candidates C. These candidates are
basically pairs (pb, c) where pb is the recommended property
and c is the number of co-occurrences with properties in the
same subject. This probably large set C cannot be shown to
the user in its entirety. Due to this fact, the use of a subset
of C of about 10 properties has proven to be reasonable as
it can be perceived completely by the user. To present the
10 most appropriate properties of C, a ranking has to be
computed for all elements of C. Basically, the count value c
which is computed for all recommendation candidates (see
Algorithm 1), is used to rank each candidate. The higher



the count value, the higher the frequency of occurrence of
the rule and therefore the co-occurrences of properties pa

and pb and therefore the higher the rank of the property.

4. EVALUATION
The presented recommendation algorithm is evaluated us-

ing a test set based on Wikipedia infoboxes. The SnoopyDB
system uses semistructured information and guides the in-
serting user by recommendations. However, as SnoopyDB
cannot provide a large data set yet, we used the Wikipedia
infobox set, as it is very large and features similarities to
data sets of a semistructured and guided information system.
Wikipedia does not impose any restrictions on structure or
schemata, the better part of the data adhere to homogeneous
schemata which are enforced by a committed community.
The schemata, which have been grown with the Wikipedia
system, can be compared to recommendation based evolved
schemata. However, these schemata are not completely ho-
mogeneous [12] and feature a noisy collaborative style and
therefore are best suited for our experiments.
For the evaluation of this approach, we used a DBpedia
dump (2010-03-16) [2] containing all 4,000,000 infobox in-
stances (about 41 million triples) of the English Wikipedia
page. We randomly chose 150,000 instances (10%) out of
about 1.5 million instances which have at least 6 distinct
properties for our test set. Based on the remaining set of
3,850,000 instances (38 million triples), we computed about
486 million rule instances as described in Section 3.2. The
reduced rule set of 7.8 million distinct rules (about 250 MB
disk space including the primary index, MySQL 5.0 Inn-
oDB engine) provided a basis for all further recommenda-
tion computations. We conducted a leave-one-out test on
the 150,000 infobox instances by randomly choosing three
properties within every infobox and removing all other prop-
erties from the infobox. Based on these three properties,
Algorithm 2 was applied to each subject of our test set.

Algorithm 2: Test Algorithm (user simulation)

Pcur ← {p1, p2, p3} //remaining three properties
Prem ← {p4, p5, . . . , pn} //removed properties
Prec ← top10rec (Pcur) //get top 10 rec. properties
while ((Prec ∩ Prem) 6= ∅) do

p← random c ∈ (Prec ∩ Prem)
Pcur ← Pcur ∪ {p}
Prem ← Prem\ {p}
Prec ← top10rec (Pcur)

end

The test algorithm computes the top-10 ranked property
recommendations based on the three remaining properties.
If the top-10 recommendations contain a previously removed
property, the recommendation is accepted and the property
is added to the set of current properties, which is then the
basis for further recommendation computations. This step
is repeated until the top-10 recommendation set does not
contain removed properties anymore or the subject is fully
reconstructed with respect to the original infobox. Proper-
ties occurring on less than five subjects – the so-called long
tail of the property distribution – are neither considered for
recommendations, nor for the evaluation. Based on this al-
gorithm, we evaluated the following metrics on the test set.

Figure 1: Reconstruction of Subjects (top-n, n=10)

Reconstruction denotes to which extent an infobox instance
can be reconstructed using Algorithm 2 (see Figure 1). Out
of the 150,000 subjects, 16,565 subjects were fully recon-
structed. Overall, 90,630 subjects were reconstructed to
more than 50%, which amounts to 60% of all subjects.
Precision and Recall were calculated using the first top-
10 recommendation set, which is based on the remaining
three properties (denoted by first). Furthermore, the aver-
age precision and average recall of all iteratively computed
top-10 recommendation sets (denoted by all) was calcu-
lated. Precision and recall are defined as precision (Prec) =
|Prec ∩Prem|

|Prec|
and recall (Prec) = |Prec ∩Prem|

|Prem|
respectively,

where Prem are the previously removed properties and Prec

is the set of top-10 recommendations. We conducted our
evaluations using the top-n recommendations with n = 5,
10, 15, 20 and 25 on all 150,000 subjects. The resulting re-
construction, precision (first and all) and recall (first and all)
values are shown in Figure 2. The results show that the re-
construction rate cannot be increased by setting the number
of recommendations to a value higher than 10. The higher
the number of recommendations, the more rises the recall
(first) value and the more decreases the precision (first).
The overall recall and precision stay constant, which can be
led back to the higher precision of recommendations based
on subjects, which have already been reconstructed for the
most part.
Our experiments and results show that only three properties
inserted by the user are sufficient to guide the user to a com-
mon schema by recommendations. Even in a very large and
collaboratively created data set, like our Wikipedia dataset,
the algorithm is stable and features a precision of over 40%
for all 800,000 top-10 recommendation sets in the test run.
This means that at least 4 out of 10 recommendations are
appropriate, the remaining 6 can be inappropriate or also
adequate but are note used in the respective Wikipedia ar-
ticle.
The presented experiments evaluate the automatic recom-

mendation of structure without any user interaction. How-
ever, the Snoopy concept provides additional recommenda-
tions while the user is typing. Consider a user who specifies
the first character of a property, e.g. ”A”. This informa-
tion can cut down the number of suitable recommendations
dramatically. Furthermore, by using a thesaurus, synonyms
can be matched and a more commonly used synonym can
be recommended to the user. Consider a user who enters



Figure 2: Precision, Recall and Reconstruction

citizens as a property. The system recommends the usage
of population and by accepting this recommendation, the
user contributes to a more homogeneous schema. All these
user input-based recommendations heavily increase the re-
call and precision values but cannot be tested within the
presented test scenario, as real interaction of a human user
is required. Some preliminary results of such user-based
tests can be found in [4] and show the acceptance of such
recommendations and a first prototype of the concept.

5. RELATED WORK
Various approaches by the recommendation, data min-

ing and semantic web communities are relevant for our ap-
proach.
The detection of frequent patterns within data has been
studied extensively [6, 5]. The detection of substructures
within semistructured information has been studied in [1, 7].
Such common substructures can be used for unified access.
However, the structure of data is not changed or improved in
any way. The computation of CF-based recommendations
for web personalization based on Association Rules has been
facilitated in [8]. However, our approach does not compute
Association Rules based on an already existing data basis,
the rules are stored during the insertion process.
There are approaches aiming at the storage of semantic in-
formation within wiki systems. Semantic Wikipedia [9] ex-
tends the wiki markup language and introduces annotated
links and attributes within wikis to increase the machine-
readability of data. However, the user is not supported dur-
ing the specification of this additional information in any
way. The “Intelligence in Wikipedia project” [11] aims at
extending infoboxes in Wikipedia. Missing attributes within
infoboxes or even missing infoboxes are detected and af-
ter this step, the system attempts to complete this miss-
ing information. Therefore, the project features Kylin, a
self-supervised information extraction system which gathers
information from various sources. This information is then
verified by explicit community feedback.
To the best of our knowledge, SnoopyDB is the only ap-
proach which has tried to contribute to a common schema
within triple-like data by using recommendations already
during the insertion process.

6. CONCLUSION
We presented a self-adapting recommendation algorithm

to ensure common and homogeneous structures within col-
laborative semistructured information systems. The recom-
mendations are provided to the user during the insertion
process and guide the user to a common schema without
restricting the user or the structure of information. These
recommendations are computed by detecting common sub-
structures in already collaboratively created information.
The evaluation on a very large dataset of 4 million sub-
jects showed that at least 4 out of 10 recommendations are
appropriate and the algorithm is able to guide the user to a
common schema after having inserted only three properties.
The resulting homogeneous data contributes to a common
data access and therefore enables complex queries on collab-
oratively created information.

7. REFERENCES
[1] T. Asai, K. Abe, S. Kawasoe, H. Arimura, H. Sakamoto,

and S. Arikawa. Efficient substructure discovery from large
semi-structured data. In Proceedings of the Second SIAM
International Conference on Data Mining, pages 158–174,
2002.

[2] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak,
and Z. Ives. Dbpedia: A nucleus for a web of open data.
Lecture Notes in Computer Science, 4825:722, 2007.

[3] G.W. Furnas, T.K. Landauer, L.M. Gomez, and S.T.
Dumais. The vocabulary problem in human-system
communication. Communications of the ACM, 30(11):971,
1987.

[4] W. Gassler, E. Zangerle, M. Tschuggnall, and G. Specht.
Snoopydb: narrowing the gap between structured and
unstructured information using recommendations. In HT
’10: Proceedings of the 21st ACM conference on Hypertext
and hypermedia, pages 271–272, New York, NY, USA,
2010. ACM.

[5] B. Goethals. Survey on frequent pattern mining.
Manuscript, 2003.

[6] J. Han, H. Cheng, D. Xin, and X. Yan. Frequent pattern
mining: current status and future directions. Data Mining
and Knowledge Discovery, 15(1):55–86, 2007.

[7] T. Miyahara, T. Shoudai, T. Uchida, K. Takahashi, and
H. Ueda. Discovery of frequent tree structured patterns in
semistructured web documents. In PAKDD ’01:
Proceedings of the 5th Pacific-Asia Conference on
Knowledge Discovery and Data Mining, pages 47–52,
London, UK, 2001. Springer-Verlag.

[8] B. Mobasher, H. Dai, T. Luo, and M. Nakagawa. Effective
personalization based on association rule discovery from
web usage data. In Proceedings of the 3rd international
workshop on Web information and data management,
page 15. ACM, 2001.

[9] M. Voelkel, M. Kroetzsch, D. Vrandecic, H. Haller, and
R. Studer. Semantic wikipedia. In WWW ’06: Proceedings
of the 15th international conference on World Wide Web,
pages 585–594, New York, NY, USA, 2006. ACM.

[10] G. Weikum, G. Kasneci, M. Ramanath, and F. Suchanek.
Database and information-retrieval methods for knowledge
discovery. Commun. ACM, 52(4):56–64, 2009.

[11] D.S. Weld, F. Wu, E. Adar, S. Amershi, J. Fogarty,
R. Hoffmann, K. Patel, and M. Skinner. Intelligence in
wikipedia. In Twenty-Third Conference on Artificial
Intelligence (AAAI’08), 2008.

[12] F. Wu and D. S. Weld. Automatically refining the
wikipedia infobox ontology. In WWW ’08: Proceeding of
the 17th international conference on World Wide Web,
pages 635–644, New York, NY, USA, 2008.


