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User Models for Culture-Aware Music Recommendation: 
Fusing Acoustic and Cultural Cues
Eva Zangerle*, Martin Pichl* and Markus Schedl†

Integrating information about the listener’s cultural background when building music recommender systems 
has recently been identified as a means to improve recommendation quality. In this article, we, therefore, 
propose a novel approach to jointly model users by their musical preferences and cultural backgrounds. We 
describe the musical preferences of users by the acoustic features of the songs the users have listened 
to and characterize the cultural background of users by culture-related socio-economic features that we 
infer from the user’s country. To evaluate the impact of the proposed user model on recommendation 
quality, we integrate the model into a culture-aware recommender system. By analyzing a dataset 
comprising approximately 400 million listening events of about 55,000 users from 36 countries, we show 
that incorporating both acoustic information of the tracks a user has listened to as well as the cultural 
background of users in the form of a music-cultural user model contributes to improved recommendation 
performance. Furthermore, we provide a systematic analysis of the influence of different features on the 
quality of the provided culture-aware track recommendations. We find that considering acoustic features 
that model the characteristics of tracks and a user’s musical preferences have the highest impact on 
recommendation performance. However, adding socio-economic features allows further improving the 
recommendation quality. In addition, we identify interesting correlations between acoustic characteristics 
of music preferences and cultural features of populations at the country level.

Keywords: user modeling; context-aware recommender systems; music-cultural user model; culture-aware 
recommender systems

1 Introduction
Recent advances in recommender systems and music 
information retrieval have shown that contextual infor
mation is vital for highly personalized results (e.g., Wang 
et al. (2012a); Braunhofer et al. (2013); Pichl and Zangerle 
(2018)). In this scope, context can be defined as “conditions 
or circumstances which affect some thing” (Kaminskas 
and Ricci, 2012; Adomavicius and Tuzhilin, 2011), where, 
e.g., environmentrelated contextual information may 
include location, time or weather (Kaminskas et al., 2012). 
Consequently, the user’s listening context can be defined 
as the user’s context during listening to music. To this end, 
the geographic location of a user is often exploited as one 
basic notion of context. Leveraging GPS coordinates to 
model similarity between listeners, which is key to building 
recommender systems, results in locationaware systems, 
which are however agnostic to cultural characteristics 
and the cultural background of users. In the scope of this 
article, we define the cultural background of users as a 

set of attributes that allow for describing the culture the 
user is embedded in, including social or economic aspects, 
as well as, e.g., cultural practices, values, and behavior. 
However, location alone does not necessarily serve as a 
good indicator for the cultural background of a user, as 
geographically close users might have a very different 
cultural background. A user’s cultural background may 
also not coincide with political borders (Pichl et al., 2017). 
Notably, the cultural background of a user was identified 
already by Schedl and Schnitzer (2014) as a possibly 
relevant aspect to improve recommender systems. We 
hence argue that modeling users based on musical 
properties of the songs they listen to (approximating 
their musical preference) on the one hand and the 
user’s cultural background on the other contributes to 
capturing music-cultural listening patterns. These patterns 
particularly describe the complex interrelation between 
users, their cultural background, and the characteristics of 
the music they listen to. In this article, we propose a novel 
music-cultural user modeling approach to exploit such 
listening patterns for recommender systems by integrating 
information about (i) the acoustic qualities of the music 
users have listened to and (ii) culturespecific information 
derived from the users’ location/country to describe the 
user’s likely cultural background.
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Leveraging a standardized collection of almost one 
billion usergenerated listening events, we evaluate 
the proposed user model.1 By exploiting musiccultural 
listening patterns captured by the proposed user model 
in a recommender system, we show that the resulting 
cultureaware music recommendations are more accurate 
than those provided by a recommender agnostic to cultural 
information. Particularly, we find that capturing a user’s 
individual music taste by the highlevel audio features of 
the tracks the user has listened to and adding Hofstede’s 
cultural dimensions (Hofstede et al., 1991) as well as data 
from the World Happiness Report (WHR) (Helliwell et al., 
2016) as a description of the cultural (and socioeconomic) 
background of the user provides the best recommendation 
results, in terms of accuarcy and error measures.

The remainder of the article is organized as follows. 
Section 2 briefly reviews related work on context and 
cultureaware music recommendation. The dataset we 
use, a processed version of the LFM1b dataset (Schedl, 
2016), is presented in Section 3. Section 4 provides details 
on (i) our methods for user modeling according to musical 
preferences and cultural aspects, and (ii) our proposed 
cultureaware recommender system. The experiments we 
conducted to evaluate the user models and recommender 
system approaches are explained in Section 5. We present 
and discuss the results obtained in Section 6. To gain more 
insights into the overall and countryspecific patterns of 
acoustic music preferences, Section 7 presents results of 
an additional study on differences in acoustic preferences 
between countries and on correlations between cultural 
and musical features. The paper is rounded off by a 
summary and outlook to followup research in Section 8.

2 Related Work
In music recommender systems, unlike for instance in 
movie recommendation, contentbased approaches have 
been the dominant focus of research for a long time (Knees 
and Schedl, 2016). Music content is, in this case, either 
incorporated into the recommendation algorithm in the 
form of handcrafted acoustic features or—more recently—
by automatic feature extraction from the raw audio signal 
using deep neural networks. Examples of the former include 
a rich set of features that have been proposed in the past 
two decades of music information retrieval research, and 
range from Mel frequency cepstral coefficients (MFCCs), 
e.g., Logan (2002), to semantic descriptors of acoustic 
properties, e.g., Miotto et al. (2010); Turnbull et al. (2008). 
For an overview, consider, for instance, Casey et al. (2008); 
Knees and Schedl (2013). Deep learningbased approaches 
to automatic feature learning for contentbased music 
recommendation include convolutional neural networks 
(CNN) and recurrent neural networks (RNN), in particular 
their variants long shortterm memory (LSTM) and gated 
recurrent units (GRU). For a more detailed review of deep 
learning approaches in music recommendation, please 
consider Schedl (2019).

Nowadays, it has become widely accepted that incor pora
ting contextual information into recommender systems 
contributes to improved recommendations (Adomavicius 
and Tuzhilin, 2011). Particularly for music recommender 

systems, studies showed that users often seek for music 
that matches their current situation, and hence context (i.e., 
occasion, event or emotional states) (Kim and Belkin, 2002; 
Lee and Downie, 2004). In the scope of music recommender 
systems, Kaminskas and Ricci (2012) distinguish environ
mentrelated context (location, time or weather), user
related context (activity, demographic information or 
emotional state of the user), and multimedia context (text 
or pictures the user is currently reading or looking at). For 
our study, the environmentrelated context of a user is of 
particular relevance as we aim to leverage both the musical 
preferences and cultural background of users for improving 
track recommendations.

Schedl and Schnitzer (2013) performed a study on the 
contribution of geospatial information to the performance 
of artist recommender systems. They conclude that if 
users listen to various different artists, the integration of 
geospatial information is beneficial. Schedl et al. (2014) 
approximate the cultural distance of users by the country 
or continent a user is located in and show that this is 
beneficial for users particularly in the U.S. and Russia. 
Furthermore, there are several approaches that exploit 
places of interest as contextual information, where the 
idea is to recommend music that suits the environment—
in an emotional or cultural sense (Kaminskas et al., 2013; 
Braunhofer et al., 2011). Rich sensory devices such as 
smart phones allow mapping a certain location to a certain 
activity that can be exploited for personalized location
based music recommendations, depending on the user’s 
inferred activity (Wang et al., 2012b). Baltrunas et al. (2011a) 
propose a contextaware music recommender system for 
car drivers, where a set of diverse contextual factors are 
incorporated (e.g., driving style, traffic conditions, weather 
or road type). Ankolekar and Sandholm (2011) propose 
the Foxtrot system, which allows users to tag music with 
geolocations. Based on this information, users can be 
provided with locationspecific music recommendations. 
Cheng and Shen (2014) model the listener’s shortterm 
music needs, their location, and the music’s overall 
popularity to create personalized music recommendations. 
Hu and Ogihara (2011) propose a music recommender 
system that integrates track genre, release year, freshness, 
and temporal aspects.

As for cultural aspects in the broader field of music 
information retrieval, Ferwerda and Schedl (2016) found 
that a user’s cultural background (modeled by Hofstede’s 
cultural dimensions (Hofstede et al., 1991)) influences 
how diverse the musical preferences of users are. 
Particularly, they found that highly individualist countries 
and countries that are flexible, pragmatic, and eager to 
adapt to changes listen to more diverse genres. Schedl 
et al. (2017) also performed a study on whether cultural 
similarity between countries (described by Hofstede’s 
cultural dimensions and the Quality of Government 
(QoG) dataset) is reflected in music taste (described 
by tags annotating music tracks). They found medium 
correlations of music taste and several cultural and socio
economic factors. Notably, this evaluation is based on the 
LFM1b dataset, which is also utilized in the experiments 
conducted in this study. Furthermore, Liu et al. (2018, 
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2017) have uncovered similarities between countries 
based on cultural and socioeconomic aspects on the artist 
level and on the album level.

Pichl et al. (2017) clustered users based on their individual 
musical preferences and their cultural characteristics. 
Relying on densitybased spatial clustering, they find 
nine clusters that describe similar users regarding both 
their musical preference and cultural background. The 
cultural background of users was described by the World 
Happiness Report (Helliwell et al., 2016) and the authors 
found that incorporating cultural information allows for 
more precise user descriptions compared to relying on 
geographic information only. However, this evaluation 
did not target recommender systems and was done on a 
substantially smaller dataset.

We are not aware of any work exploiting the cultural 
background of users for the computation of contextaware 
music recommendations and hence locate a research gap 
here. In this paper, we show that utilizing the cultural 
background of users together with their general musical 
preference contributes to improved recommendation 
quality.

3 Data
In this section, we present the data utilized for performing 
our analyses and experiments.

For our analyses, we require a dataset that contains a 
substantial number of listening histories of users as well as 
country information about these users. There are indeed 
a number of datasets containing listening histories: the 
Million Musical Tweets Dataset (Hauger et al., 2013) and the 
MusicMicro dataset (Schedl, 2013) come with contextual 
information related to time and location. The musical 
listening histories dataset (Vigliensoni and Fujinaga, 
2017), the Yahoo! Music ratings dataset (Dror et al., 2012) 
and the #nowplaying dataset (Zangerle et al., 2014) 
contain a substantial number of users, items also including 
timestamps of LEs; however, no contextual information 
regarding the user’s country is given. Hence, we base 
our investigations on the LFM1b dataset (Schedl, 2016), 
which contains more than one billion listening events 
created by users of the online music platform Last.fm,2 
where music listeners can share information about their 
listening behavior. The LFM1b dataset has been created in 
the following way using various endpoints of the Last.fm 
API (Schedl, 2017): first, the top artists labeled by any of 
the 250 top usergenerated tags used on Last.fm were 
retrieved. Then, the top fans of these artists were fetched, 
resulting in about 465,000 users. Listening histories (i.e., 
each user’s set of listening events) of a randomly chosen 
subset of 120,322 users were subsequently downloaded. 
The creation times of the listening events cover the time 
span between January 2005 and August 2014.

Since we aim to model musiccultural preferences 
jointly by individual musical preference and the cultural 
background of users, we require the data to contain 
information about the location of the user. For 45.87% of 
all users within the LFM1b dataset, country information 
about the user is available. Therefore, we constrain the 
dataset to those users (and their tracks) for whom we are 

able to obtain country information. This provides us with 
a dataset comprising 55,191 users, who have listened to a 
total of 26,022,625 distinct tracks, which are captured by 
a total of 807,890,921 listening events.

Besides the information contained in the LFM1b 
dataset, we also require information about the tracks 
the users listened to (cf. Section 4.1). Particularly, we are 
interested in content features that are able to describe a 
given track. Therefore, we rely on the Spotify API to gather 
contentbased audio features, as described in Section 4.1, 
for each track. For all listening events of users for whom we 
can obtain country information, we search for the <track, 
artist, album> triples extracted from the LFM1b dataset 
using the Spotify search API3 to gather the Spotify URI of 
each track (i.e., we provide all three parts in a conjunctive 
query). This URI is subsequently used to query the audio 
features API,4 which returns the set of audio features 
describing the contents of a given track (cf. Section 4.1), 
which allowed gathering 4,326,809 Spotify URIs. For the 
remainder of the tracks, the Spotify API is not able to 
correctly resolve the triples to a track. We attribute this to 
two factors: either the searched track is not provided by 
Spotify or the track, artist, and album information cannot 
be matched to a Spotify track URI unambiguously. Also, 
the Spotify API does not provide all features for all tracks 
and hence, we remove those tracks for which the API does 
not provide a full set of audio features from the dataset. 
Employing this procedure, we are able to acquire the 
full set of audio features for a total of 3,478,399 tracks. 
Notably, these 13.36% of the distinct tracks for which we 
can obtain audio features are able to capture 48.89% of all 
listening events (i.e., the tracks listened to by users).

The remaining tracks and respective listening events 
are excluded from the dataset. This eventually results in 
a dataset of 55,149 users, 394,944,868 listening events 
and 3,478,399 distinct tracks. Table 1 depicts the main 
characteristics of the dataset underlying our analyses.5 
As can be seen, the average number of listening events 
per user is 7,161, which we consider a substantial 
number that is able to capture a user’s individual musical 
preferences well. Furthermore, the average number of 

Table 1: Statistics of the dataset utilized (LE = listening 
event).

Item Value

Listening events 394,944,868

Users 55,149

Distinct tracks 3,478,399

Min. LE per user 1

Q1 LE per user 1,442

Median LE per user 5,667

Q3 LE per user 9,738

Max. LE per user 399,210

Avg. LE per User 7,161.41 (±10,326.91)

Avg. Users per Country 1,155.93 (±1,894.96)

https://www.last.fm/
https://www.last.fm/
https://www.last.fm/
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users per country is 1,156. Along the lines of Ferwerda 
and Schedl (2016), we constrain the dataset to countries 
with more than 200 users to ensure that countries are 
wellcharacterized and results are valid and representative 
(at least of a typical music streaming community such as 
the one at Last.fm). Table 2 depicts the number of users 

per country for all countries with more than 200 users 
within our dataset. In total, the cleaned dataset features 
users from 36 different countries. Note that countries in 
this article are abbreviated using their ISO 3166 2digit 
country code.6

4 Methods
In the following, we detail the proposed approach for 
leveraging individual and cultural listening patterns for 
the computation of track recommendations based on 
the underlying dataset (as described in Section 3). We 
first present our user modeling approach (for individual 
and cultural listening patterns) and secondly present the 
proposed musiccultural user model. Subsequently, we 
show how we leverage this model for the computation of 
track recommendations.

4.1 User Modeling: Musical Preferences
As for modeling individual musical preferences, we gather 
contentbased audio features for each of the tracks in the 
dataset by querying the Spotify API7—following the lines 
of, e.g., Pichl et al. (2016); Andersen (2014); McVicar et al. 
(2011). We make use of these Spotify highlevel features 
for a number of reasons: first, the LFM1b dataset does 
not contain audio data that we could use to extract audio 
features from. Second, our analyses aim at investigating the 
general suitability of merging acoustic and cultural cues 
for music recommendation rather than lowlevel feature 
engineering and hence, we rely on Spotify’s audio features as 
a compact characterization of tracks. These content features 
are extracted from the audio signal of a track and comprise:

1.  Danceability describes how suitable a track is for 
dancing and is based “on a combination of musical 
elements including tempo, rhythm stability, beat 
strength, and overall regularity.”

2.  Energy measures the perceived intensity and activ
ity of a track. This feature is based on the dynamic 
range, perceived loudness, timbre, onset rate and 
general entropy of a track.

3.  Speechiness detects presence of spoken words in a 
track. High speechiness values indicate a high degree 
of spoken words (talk shows, audio book, etc.), where
as medium to high values indicate e.g., rap music.

4.  Acousticness measures the probability that the given 
track contains only acoustic instruments.

5.  Instrumentalness measures the probability that a 
track contains no vocals (i.e., it is instrumental).

6.  Tempo quantifies the rate of the beat in beats per 
minute.

7.  Valence measures the “emotional positiveness” con
veyed by a track (i.e., cheerful and euphoric tracks 
reach high valence values).

8.  Liveness captures the probability that the track was 
performed live (i.e., whether an audience is present 
in the recording).

4.2 User Modeling: Cultural Aspects
As for the cultural dimension, we propose to model 
cultural aspects on a country level and make use of 
two different resources: Hofstede’s cultural dimensions 

Table 2: Number of users per country for countries with 
more than 200 users. We use ISO 3166 2digit country 
codes to abbreviate country names.

Abbrv. Country Users

US United States 10,251

RU Russian Federation 5,021

DE Germany 4,576

UK United Kingdom 4,533

PL Poland 4,403

BR Brazil 3,882

FI Finland 1,409

NL Netherlands 1,375

ES Spain 1,242

SE Sweden 1,230

UA Ukraine 1,140

CA Canada 1,077

FR France 1,055

AU Australia 976

IT Italy 973

JP Japan 798

NO Norway 750

MX Mexico 705

CZ Czechia 632

BY Belarus 558

BE Belgium 513

ID Indonesia 484

TR Turkey 478

CL Chile 425

HR Croatia 372

PT Portugal 291

AR Argentina 282

CH Switzerland 277

AT Austria 276

HU Hungary 272

DK Denmark 271

RS Serbia 253

RO Romania 237

BG Bulgaria 236

IE Ireland 219

LT Lithuania 202

https://www.last.fm/
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(Hofstede, 1980; Hofstede et al., 1991)8 and the World 
Happiness Report9 of 2016 (Helliwell et al., 2016), which 
we describe in the following.

A widely accepted instrument to describe cultures is 
Hofstede’s cultural dimensions (HOF). This framework 
describes a nation’s culture and values by the following 
six dimensions:

1.  Power distance (PD) is defined as “the extent to 
which the less powerful members of organizations 
and institutions (like the family) accept and expect 
that power is distributed unequally” (Helliwell et al., 
2016).

2.  Individualism (IDV) captures the extent to which 
people are integrated into groups. Societies with 
high scores possess only loose ties and the individu
al is considered more important than the collective 
group.

3.  Masculinity (MAS) assesses a preference in society 
for achievement, heroism, assertiveness and mate
rial rewards for success. Low masculinity (femininity) 
signals a preference for cooperation, modesty, caring 
for the weak and quality of life.

4.  Uncertainty avoidance (UA) measures to which degree 
members of a society tolerate ambiguity.  Countries 
with a high score tend to rely on stiff codes, guide
lines, and laws. In contrast, lower scoring countries 
show more tolerance and acceptance of differing 
thoughts.

5.  Long-term orientation (LTO) measures the connection 
of the past with current and future actions or chal
lenges. Lowscoring societies tend to keep traditions 
and norms and are suspicious of societal change, while 
highscoring societies encourage thrift and adaptation.

6.  Indulgence (IND) captures the happiness of a coun
try and “relatively free gratification of basic and 
natural human drives related to enjoying life and 
having fun”. In countries with low indulgence scores, 
gratification of needs is suppressed and regulated by 
strict social norms.

In addition to Hofstede’s cultural dimensions, we com
plement our model with socioeconomic characteristics 
of countries. We capture these by figures extracted from 
the World Happiness Report (WHR) (Helliwell et al., 2016). 
Schimmack et al. (2002) showed that cultural factors are 
directly influenced by the subjective wellbeing of people. 
Therefore, we rely on the WHR as it captures people’s 
cognitive and affective evaluations of their daily life 
and thus, their subjective wellbeing (Diener, 2000) on 
a country level. The WHR provides the following set of 
measures capturing the perceived happiness of countries:

1.  Freedom measures the perceived freedom to make 
life choices.

2.  Healthy life expectancy captures the healthy life 
 expectancy at birth in a given country.

3.  Generosity specifies whether people in a country are 
willing to spend money on a charity.

4.  Social support states if people have people helping 
them if they need support (i.e., relatives or friends).

5.  Trust measures the publicly perceived absence of 
corruption in government and business.

6.  Happiness quantifies the subjective and perceived 
happiness.

7. GDP is the real gross domestic product per capita.

4.3 Music-Cultural User Model
Based on the features we leverage to capture a user’s 
musical preferences (Section 4.1) and a user’s cultural 
background (Section 4.2), we propose the following 
musiccultural user model for computing cultureaware 
recommendations.

Generally, we characterize a user’s individual musical 
preferences and cultural background in a single feature 
vector. As for capturing a user’s individual musical 
preferences based on the tracks listened to, we leverage 
the audio features of tracks as presented in Section 4.1. 
Except for tempo, all of these features are given in the 
range of [0,1]. For tempo, we apply a linear minmax 
scaling to also represent it in the range of [0,1]. To 
exclude tracks with audio features that distort a user’s 
aggregated musical features, we remove outlier tracks 
from the user’s listening history by applying the median 
absolute deviation (MAD) outlier detection method (Leys 
et al., 2013). We consider a feature value an outlier if it 
is not within M ± a · MAD, where M is the median of 
this particular feature across all tracks of a user and MAD 
is the median absolute deviation of these values. As for 
the choice of a, we set a strongly conservative threshold 
a = 3 as proposed by Leys et al. (2013). Hence, a value 
is considered an outlier if it is not within three MADs 
around the median. Lastly, a track is considered as an 
outlier in the list of tracks of a particular user if one of 
its features is considered an outlier and consequently 
removed from the user’s listening history. For each of the 
features, we compute the average feature value and the 
standard deviation across all tracks in the user’s listening 
history and add these average and standard deviation 
(SD) values to the user’s feature vector. We chose to 
add the standard deviation of each of these features 
to mitigate the effects of averaging a large number of 
features that potentially differ substantially.

For the approximation of the cultural background 
of users (or rather, the country they live in) by socio
economic aspects, we rely on the variables of Hofstede’s 
cultural dimensions and the World Happiness Report and 
extract these based on the user’s country information. We 
add these variables to the feature vector to find cultural 
listening patterns that reflect cultural similarity better 
than the geographic distance. For each of these variables, 
we perform a linear minmax scaling such that all elements 
of the vectors are within [0, 1] and concatenate it with the 
user vector.

4.4 Recommendation Computation
We model the computation of contextaware music 
recommendations based on the proposed user model as a 
learning task for rating prediction, where we aim to learn 
the probability P that a given user u has listened to a given 
track t. To learn these probabilities P(u, t) for all users 
and tracks, we rely on Gradient Boosting Decision Trees. 
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Particularly, we utilize the popular XGBoost system (Chen 
and Guestrin, 2016), a scalable endtoend tree boosting 
approach which has been shown to be highly suited for 
recommendation tasks (Pacuk et al., 2016; Ayaki et al., 
2017; Tran, 2016). Using XGBoost, we set the learning 
objective to logistic regression for binary classification, 
which provides us with the desired probabilities. For the 
training phase, we set the training objective to be the 
binary classification error rate (i.e., the number of wrongly 
classified tracks in relation to all tracks classified, where 
tracks with a prediction value larger than 0.5 are classified 
as relevant for the given user, and all other tracks are 
considered irrelevant for the user).

Please note that we deliberately chose a classification
based recommendation approach and refrained from 
utilizing more elaborate recommender approaches such as 
contextaware matrix factorization (Baltrunas et al., 2011b) 
or tensorbased factorization approaches (Karatzoglou et 
al., 2010) as we aim to focus on user modeling aspects 
in this paper. Hence, we chose to compare different user 
models based on a simple classificationbased recommen
dation approach which also allows us to get a deeper 
understanding of the contribution of individual features 
of the user model (cf. Section 6).

For the classification task carried out, we require a 
rating for each track that allows us to define whether a 
given track was listened to (and thus, considered relevant) 
for a given user. Hence, we add a binary factor (rating) 
to the processed dataset: for each unique <user, track> 
combination, the rating ri,j is 1 if the user ui has listened to 
track tj at least once. Please note that users and tracks may 
be represented by different models as described in Section 
5.1.2. Due to a lack of publicly available data, our dataset 
does not contain any implicit feedback of users (i.e., 
skipping behavior, session durations, or dwell times during 
browsing the catalog). This is why we cannot estimate any 
preference towards an item a user has not listened to 
as proposed by Hu et al. (2008). Thus, we assume tracks 
the user has not listened to (in the case of implicit data, 
all nonobserved tracks) as negative examples (Hu et al., 
2008). Even though there is a certain bias towards negative 
values as some missing values might be positive, Pan et al. 
(2008) found that this method for rating estimation works 
well. The rating ri,j for a given user ui and given track tj can 
now be defined as stated in Equation 1.

 ,

1 if listened to

0 otherwise
i j

i j

u t
r

ìïï=íïïî
 (1)

We train an XGBoost model that performs a binary 
classification on the relevance of tracks for the given 
users. We extract the probabilities underlying the 
classification decision, which can be used to (i) perform 
a ranking of tracks by their probability of relevance in 
the recommendation task which allows us to conduct a 
rankingbased evaluation of the proposed models, and 
(ii) evaluate the predictive performance of the proposed 
models by computing error metrics.

5 Experiment Design
This section reports on the experiments conducted for 
evaluating the previously described cultureaware recom
mender system.

5.1 Experimental Setup
In the following, we first present the user models evaluated 
and describe the evaluation method utilized for capturing 
the recommendation performance of the proposed user 
model.

5.1.1 Evaluation Strategy
To evaluate the performance of the proposed contextual 
user modeling in regard to recommendation quality, we 
perform a peruser evaluation. Therefore, we use each user’s 
listening history and perform a leave-k-out evaluation per 
user (also referred to as holdout evaluation) (Cremonesi 
et al., 2008; Breese et al., 1998; Cremonesi et al., 2008), 
where we set k to 50 (as described later in this section).

The underlying dataset only provides items with positive 
feedback (Hu et al., 2008) (i.e., items that have been listened 
to by the user) gathered via users’ listening histories. As 
the recommendation task is transformed into a rating 
prediction task, we require the dataset to also include 
negative examples. Therefore (and as described previously 
in Section 4.4), for each user, we randomly add tracks the 
user did not interact with (i.e., tracks tj with ri,j = 0 for the 
given user ui) to the dataset until the listening history of 
each user in both the training and test sets are filled with 
50% relevant and 50% nonrelevant items for the user. 
We chose to oversample the positive class to avoid class 
imbalance and hence, a bias towards the negative class 
(the number of tracks not listened to is much larger than 
the number of tracks listened to, for all users).

As we aim to evaluate the benefit of adding cultural 
aspects in a track recommendation scenario, we also need 
to characterize tracks. For our proposed model, we rely 
on the acoustic features of each track and add these to 
the track vector. However, we also need to assign cultural 
features to tracks to be able to match users of a certain 
culture with tracks that are listened to by users with a 
similar cultural background. This is particularly relevant 
for tracks in the negative class. Preliminary experiments 
showed that we cannot assign randomly computed 
cultural features or the cultural features of the current 
user to tracks as this causes the XGBoost model to learn 
that all tracks with the user’s culture assigned belong 
to the positive class, whereas all tracks from any other 
culture (i.e., culture information that is consistent across 
a number of users or purely random culture information) 
belong to the negative class. Therefore, we propose to 
assign the cultural features of the country in which the 
track is most popular to each track. We argue that the 
track is most characteristic and representative for the 
country in which the track is most popular. Therefore, we 
first compute the playcounts of each track in each country 
within the dataset. Next, we normalize the playcount (PC) 
of each track t ∈ T (i.e., the universe of tracks in the dataset) 
in each country c by the total amount of listening events 
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of the country (i.e., we compute 
( , )

( , )
j T

PC c t

PC c j
Îå  for each country c 

and for each track t). This allows us to infer the country in 
which it accounts for the highest share of listening events 
and hence, is most popular. We subsequently assign the 
culture of this country to the track. For obtaining negative 
samples (tracks), we randomly select a track from the 
dataset that the current user has not listened to and again 
assign this track the cultural features of the country where 
the track is most popular.

Based on the dataset that now contains an equal 
amount of positive and negative samples for each user, we 
use a leavekout evaluation strategy. Therefore, we have 
to compute a holdout set of size k for each user: along the 
lines of previous research (He et al., 2017; Elkahky et al., 
2015), we randomly select 50 positive samples (tracks that 
the user has listened to) and 500 negative samples (tracks 
the user has not listened to). These 550 tracks form the 
test set for each user, whereas the recommender system 
is trained on the remainder of the dataset. Subsequently, 
we compute the predicted ratings for the tracks in the 
test set as presented in Section 4.4, aiming to rank the 
50 positive samples on top, whereas the negative samples 
should be ranked on the bottom of the ranked list of 
recommendations.

5.1.2 Evaluated Models and Baselines
To assess the performance of each of the proposed user 
models, variations thereof and two baseline approaches 
in terms of recommendation quality, we separately 
evaluate these different user models and compare their 
performance. An overview of the evaluated modeling 
approaches is depicted in Table 3. The evaluated models 
describe a user either by the user’s individual music 
preferences described by the acoustic features of the tracks 
the user listened to (U_AF), the user’s cultural/socio
economic background described by Hofstede’s dimensions 
(U_HOF) and the World Happiness Report (U_WHR), or the 
user identifier (U_ID). Similarly, we describe tracks by their 
acoustic features (T_AF), the culture they are embedded 
in (T_HOF and T_WHR) or by their track identifier (T_ID). 
Please note that we include the user and track identifiers 
in the respective models as this allows us to extend and 
directly compare the approaches to a baseline model (User 
+ Track), that is only based on these two identifiers. As 

can be seen from Table 3, we evaluate the musiccultural 
model (Music + Culture) as proposed in Section 4.3. We 
also individually evaluate the performance of a model 
solely relying on musical preferences of users and features 
of tracks (Music model), and analogously a model that 
describes users and tracks by their cultural background 
(Culture model).

Furthermore, we investigate a set of baselines to compare 
our proposed models to. First, we evaluate an approach 
that uses each user’s listening history and additionally, 
utilizes the user’s country code (e.g., US for users from the 
United States) as contextual information for both the user 
and the track (Country model). Here, we aim to evaluate 
whether the country code may act as a proxy for cultural 
factors of users. Furthermore, we evaluate a context
agnostic baseline relying solely on the users’ listening 
histories and hence, a model that solely relies on the user 
and track ids for classification (User + Track) in a traditional 
collaborative filtering approach.

5.1.3 Evaluation Metrics
We model the contextaware recommendation of tracks as 
a rating prediction task, therefore we use the root mean 
squared error (RMSE) and mean absolute error (MAE) to 
measure the prediction error. We compute the RMSE and 
MAE for each individual user and consequently compute 
the average among all users. Furthermore, we are also 
interested in a decisionbased evaluation (Celma, 2010) of 
our approach and therefore, compute precision, recall, and 
the F1measure to assess the topn accuracy (Cremonesi 
et al., 2010), where n is the number of topranked track 
recommendations that is evaluated. Therefore, we require 
the set of computed recommendations to be ranked. 
Hence, we rank the track recommendation candidates 
with respect to the probability that they belong to the 
positive class in descending order and compute the topn 
track recommendations. Next, we have to transform the 
rating prediction task into a binary classification task 
(Pan et al., 2008) for deciding whether a given track is 
relevant or not for a given user. For our experiments, 
we consider all predicted probabilities P(u, i) > 0.5 as a 
predicted interaction and thus, we consider these items 
as relevant, all others as irrelevant.10 For assessing the 
overall precision, recall, and F1measure of the evaluated 
recommender systems, we compute the measures for each 
individual user and compute the average among all users. 
For computing the recall measure, all relevant items in 
the test set are considered, independent of the number of 
recommendations. Thus, there is a natural cap for recall, 
namely the number of recommendations divided by the 
number of relevant items in the test set.

Regarding the number n of evaluated recommendations, 
we argue that exposing a user to more than 10–20 tracks 
at a time might provoke choice overload and hence, is 
barely meaningful. The problem of choice overload has 
been addressed by Bollen et al. (2010) who state that user 
satisfaction is highest when presenting the user with top5 
to top20 items—assuming that the recommendation list 
contains a sufficient number of relevant items for the user. 

Table 3: Overview of evaluated models, where features 
prefixed with U describe a user and features prefixed 
with T describe a track; the models on two last rows 
serve as baselines.

Model User Features Track Features

Music + 
Culture

U_ID, U_AF, U_WHR, 
U_HOF

T_ID, T_AF, T_WHR, 
T_HOF

Music U_ID, U_AF T_ID, T_AF

Culture U_ID, U_WHR, U_HOF T_ID, T_HOF, T_WHR

Country U_ID, U_Country_ID T_ID, T_Country_ID

User + Track U_ID T_ID
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Hence, we are particularly interested in the performance 
of the proposed recommendation approaches for lower 
values of n. Furthermore, we argue that in the presented 
scenario, precision is the more important measure to 
consider from a user perspective as it able to capture the 
user’s effective utility of the provided recommendations 
better (Bellogin et al., 2011) and hence, the practical value 
of the recommender system for the user. Thus, we argue 
that particularly the precision@10 results are relevant for 
our evaluation. As for the tuning of XGBoost parameters, 
we performed a preliminary crossevaluation aiming to 
optimize precision values for the proposed models and 
hence, set the maximum number of trees to learn the 
models to 1,000. For all other parameters, we rely on the 
default settings.

6 Experimental Results and Discussion
In the following, we first present the findings of the 
topn recommendation evaluation task (Section 6.1), 
before presenting the evaluation of the underlying rating 
prediction task in Section 6.2. Subsequently, we elaborate 
on the importance of individual features of the proposed 
user model (Section 6.3) and discuss the limitations of the 
approach (Section 6.4).

6.1 Top-n Recommendation Evaluation
Table 4 shows the results obtained by the evaluated user 
models (cf. Table 3), where we consider the top10 ranked 
recommended tracks for the evaluation. Regarding the 
precision of the computed recommendations, we observe 
that the best results are obtained by the proposed Music + 
Culture model, which incorporates both the user’s general 
musical preferences and the cultural background of the 
user. This model reaches a precision@10 of 0.98, whereas 
the Music model reaches a precision of 0.95 and the 
Culture model a precision of 0.31, respectively. Compared 
to the baselines, we observe that using only the country 
of the user as a proxy for cultural aspects (Country model) 
achieves a precision value of 0.83, whereas the User + Track 
model performs worse, reaching a precision value of 0.13.

Regarding the recall values obtained, we observe that 
again, the Music + Culture model performs best (0.63), 
followed by the Music (0.59) and Country (0.52) models. 
The User + Track baseline again reaches a lower value 
(0.08), whereas the Country model again performs well 
(0.52). For the sake of completeness, we also list the F1 
values obtained by the individual models, which are 

consistent with the individual findings regarding recall 
and precision. In preliminary baseline experiments, 
we have also compared our approach with a traditional 
contextagnostic matrix factorization approach. Singular 
value decomposition based on implicit feedback achieved 
a precision of 0.49, a recall of 0.10, and an F1score of 0.17. 
As already elaborated, we consider the precision metric 
more relevant in this scenario. Thus, these baseline results 
show that the proposed models do indeed contribute to 
recommendation quality.

Figure 1 shows a precision/recall plot of the evaluated 
approaches for n = 1…50 track recommendations. From 
this plot, we again observe the superior performance of 
the musiccultural user model across all evaluated lengths 
of recommendation lists n. The plot also highlights the 
difference between the two models that incorporate 
acoustic features for describing musical preferences 
(Music + Culture and Music) and the remaining user 
models that do not exploit this information, where 
precision and recall are both substantially lower. These 
findings underline that the musical preference of users 
is paramount for recommendation scenarios. We can also 
observe that using the user’s country as a proxy for their 
cultural background does indeed contribute. Naturally, 
including a set of cultural features to describe the 
user’s cultural background also allows to exploit a more 
comprehensive, multidimensional notion of similarity 
between users (Schedl and Schnitzer, 2013), which can 
be exploited by the recommender system. We also have 
experimented with combining musical features and 
country code, however, this did not increase performance 
compared to using only musical features.

6.2 Rating Prediction Evaluation
Besides the decisionbased evaluation regarding recall and 
precision, we are also interested in the prediction accuracy 
of the individual user models. Table 5 presents the RMSE 

Figure 1: Precisionrecallcurves for topn = 1…50 recom
mendations for all models.
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Table 4: Precision, recall, and F1score for all proposed 
models (sorted by performance; standard deviation in 
parentheses).

Model Prec Rec F1

Music + Culture 0.98 (±0.04) 0.63 (±0.15) 0.75 (±0.10)

Music 0.95 (±0.06) 0.59 (±0.15) 0.72 (±0.11)

Country 0.83 (±0.11) 0.52 (±0.12) 0.63 (±0.10)

Culture 0.31 (±0.15) 0.18 (±0.08) 0.24 (±0.09)

User + Track 0.13 (±0.10) 0.08 (±0.06) 0.13 (±0.06)
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and MAE per user across all tracks within the user’s test 
set. These findings are in line with the decisionbased 
findings as the lowest RMSE is again achieved by the Music 
+ Culture model (RMSE of 0.15). In comparison, relying 
solely on acoustic features to describe users and tracks 
(Music model) achieves a RMSE of 0.17, whereas relying 
on cultural aspects only results in a RMSE of 0.88. The 
baseline approaches reach RMSE values of 0.36 (Country 
model) and 0.93 (User + Track model), respectively. The 
evaluation of mean absolute errors of the individual 
models is consistent with the findings for RMSE.

6.3 Influence of Features
Apart from the performance of the proposed music
cultural user model in regard to recommendation quality, 
we are also interested in the contribution of the individual 
features of the user model to the trained XGBoost 
classification model. Therefore, we utilize the gain of each 
feature in the XGBoost model (Chen and Guestrin, 2016), 
which is a measure for the improvement in accuracy when 
adding a split on the given feature to the tree. This gain 
is computed for each feature in every tree of the trained 
model and is then averaged to a final gain value for each 
feature. Figure 2 shows the contribution of the top30 
individual features to classification performance of the 
proposed musiccultural user model. Please recall that in 

the proposed model, both users and tracks are described 
by musical and cultural features (cf. Table 3). Hence, we 
color the bars of user features in blue and track features in 
red. In total, acoustic features account for 93% of the gain 
(76% user features, 17% track features), WHR features 
account for 4% and Hofstede’s dimensions for 3% of the 
gains.

The results show that the major contributing features 
are related to the acoustic features that describe the 
user’s musical preference and the tracks. This high 
importance of acoustic features when it comes to 
describing users is congruent with the analyses of Pichl 
et al. (2017) and in line with the findings of the topn 
recommendation evaluation, where the Music model 
was the second best performing model. The features 
that contribute most to the classification accuracy (and 
hence, recommendation performance) are the average 
acousticness (user_acousticness_avg), instrumentalness 
(user_instrumentalness_avg) and danceability (user_
danceability_avg) of tracks the user has listened to. As 
for the track features, acousticness and instrumentalness 
are also the main contributing features. This high 
contribution of instrumentalness and acousticness is in 
line with previous findings (Pichl et al., 2016), where these 
two features have been shown to discriminate tracks well 
in a principal component analysis. These findings are also 
congruent with the results of the evaluation conducted, 
where the user model that solely relies on the user’s 
preferences achieved the second best recall and precision 
values (performing substantially better than the Culture, 
Country, and User + Track models). However, while socio
economic factors are not among the top contributing 
features, socioeconomic features nevertheless contribute 
to the recommendation quality and make a decisive 
difference regarding recommendation performance. The 
user features contributing most are healthiness, social 
support, happiness, GDP and masculinity and for tracks, 
the happiness and social support features provide the 
highest gain. While WHR features contribute more in our 
scenario, features stemming from both sources (WHR 
and Hofstede’s cultural dimensions) are among the top
contributing features; this also supports our choice to 
include both social and economic features in the user 
model as both contribute to higher recommendation 
performance.

6.4 Discussion and Limitations
We believe that the proposed musiccultural user model 
and the conducted evaluation are an important first step 
towards cultureaware music recommender systems. The 
obtained results show that the proposed musiccultural 
user model outperforms all other evaluated models. 
However, we still see a few limitations of our approach, 
which we will elaborate on in the following. First, we 
currently represent the musical preferences of a user by 
utilizing the average of the acoustic features of the tracks 
the user has listened to and the standard deviation thereof. 
While we believe that this method is sufficiently elaborate 
for the experiments conducted, this is a rather naive 
approach towards representation and does not reflect the 
diverse and often contextrelated musical preferences of 

Table 5: RMSE and MAE of all models.

Model RMSE MAE

Music + Culture 0.15 0.02

Music 0.17 0.03

Country 0.36 0.13

Culture 0.88 0.77

User + Track 0.93 0.85

Figure 2: Information gain of the top 30 individual user 
and track features of the Music + Culture model.
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users. Similarly, we currently use a rather simple majority 
voting approach for assigning cultural features to tracks. 
However, in the paper at hand, we are particularly 
interested in the influence of individual features and 
characteristics of users, their cultural background, and 
tracks on the recommendation performance and, hence, 
deliberately refrain from utilizing a more comprehensive 
user model. Nevertheless, looking into creating more 
comprehensive and complex user models based on the 
cultural background of users is part of our future research 
agenda. For instance, Zangerle and Pichl (2018) employed 
Gaussian Mixture Models (GMM) for modeling a user’s 
diverse tastes of music and showed that utilizing such a 
GMM approach in combination with the acoustic features 
of the tracks the user listened to is able to capture a user’s 
musical preferences well.

The test set creation procedure applied (random 50 
positive and 500 negative samples per user) allows for 
evaluating the ability to distinguish positive and negative 
samples. We have also experimented sampling 10 relevant 
and 100 irrelevant tracks for each user, however, we argue 
that given the high number of listening events per user in 
the dataset, sampling 50 positive and 500 negative tracks 
reflects a more suitable scenario. The results achieved 
were high in precision and low on the prediction error 
metrics, showing that the proposed models were able to 
detect the 50 positive samples and rank these on top.

As already stated in Section 4.4, we consider the 
classifi cationbased approach for the computation of 
recommendations as a baseline regarding the actual 
recommender system. However, we believe that even 
though the method is rather simple, it provides us with 
conclusive results regarding the user models evaluated, 
which was our focus.

7 Interplay Between Country Characteristics 
and Music Preferences
In the following, we analyze the cultural/socioeconomic 
and acoustic features on a country level more thoroughly, 
aiming to uncover countryspecific patterns of their 
inhabitants’ music preferences in terms of acoustic 
features and to identify similarities and differences 
between countries (Section 7.1). We further investigate 
to which extent cultural/socioeconomic and acoustic 
features correlate with each other, on a perfeaturebasis 
(Section 7.2).

7.1 Country-specific Differences of Acoustic Feature 
Preferences
To obtain insights into countryspecific particularities of 
the acoustic properties of music consumption, we provide 
an overview of the investigated acoustic features (and 
their standard deviations) per country, computed over 
all users in each country in Table 6. Overall, we observe 
pronounced differences between countries for most of the 
properties, but also nonnegligible standard deviations 
within countries, indicating partly substantial variances 
in music preferences among citizens. Highest danceability 
in music preferences can be found in France (0.533), 
Colombia (0.532), and Mexico (0.529); the lowest in Iran 
(0.455). Notably, Iran is also the country with the lowest 

music energy (0.599) in its population’s preferences. In 
contrast, the populations of Finland (0.806), Bulgaria 
(0.801), and Hungary (0.800) like highly energetic 
music. This is further evidenced when investigating their 
preferred music styles, which include several variants of 
the genre metal. As for speechiness, the lowest figures are 
found in Indonesia and Argentina (both 0.048), whereas 
music listeners in Poland (0.065) tend to listen more 
commonly to music featuring spoken words such as hip
hop or rap. Acousticness is lowest for Finland (0.062) and 
Bulgaria (0.063); by far highest for Iran (0.278), China 
(0.232), and Turkey (0.199). As for instrumentalness, by far 
the lowestscoring countries are Brazil (0.029), Indonesia 
(0.040), and Argentina (0.059). At the other end, users in 
Romania (0.224) and Greece (0.198) particularly like non
vocal instrumental music. Regarding liveness, Iran (0.133) 
and Turkey (0.137) show the lowest values, whereas 
Finland (0.166) has the highest figures for this attribute. 
This may be explained by Finns having a particular 
preference for live music and by Finland having a very 
vivid music performing culture and therefore a large 
number of hobby musicians as well as (semi)professional 
bands. Music listened to by Iranian users scores by far the 
lowest on the dimension of valence, on average (0.298). 
In stark contrast, music consumed in South and Middle 
America scores highest on this dimension; in particular, 
users in Colombia (0.486), Mexico (0.485), Argentina 
(0.482), and Brazil (0.478) tend to listen to a substantial 
amount of music that is suited to evoke positive emotions. 
Finally, when it comes to tempo, users in Iran and Turkey 
tend to prefer slower music, around 120 BPM on average. 
On the other hand, Venezuela, New Zealand, Hungary, and 
Germany prefer faster music, on average around 125 BPM.

7.2 Correlations Between Cultural Background and 
Music Preferences
To uncover possible relationships between acoustic 
properties of a country’s inhabitants’ music preferences 
and the cultural or socioeconomic characteristics, we 
investigate the correlation between each of the acoustic 
features and the cultural/socioeconomic dimensions. 
Tables 7 and 8 depict Spearman’s rankorder correlation 
coefficients for Hofstede’s cultural features and WHR 
socioeconomic characteristics, respectively. We use rank
order correlation to cope with the different value ranges 
of the various dimensions investigated and compute 
these correlations considering all users in our dataset as 
observations. To describe each user’s aggregated musical 
feature vector, we follow the same approach as detailed 
in Section 4.3. Correlations larger than 0.1 (or less than 
–0.1) are highlighted in bold. Statistically significant 
correlations are marked with an asterisk.

As a general observation, while almost all correlations 
are significant (even at p < 0.001), most are only weak, 
which hints at the different nature of aspects to compare. 
Nevertheless, some interesting observations can be made. 
Focusing on Table 7, we observe notable correlations 
for the cultural trait of indulgence (IND). More precisely, 
a positive correlation between IND and acousticness 
(0.125) as well as valence (0.114) is identified. This means 
that societies that like to engage in joyful activities tend 
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Table 6: Means and standard deviations (in parentheses) of acoustic preferences of each country’s users. The highest 
value of each acoustic property is printed in bold; the lowest in italic. Countries are sorted alphabetically according 
to their country code.

Country Danceability Energy Speechiness Acousticness Instrumen
talness

Liveness Valence Tempo

AR 0.512 (0.091) 0.739 (0.140) 0.048 (0.017) 0.113 (0.163) 0.059 (0.166) 0.145 (0.034) 0.482 (0.122) 123.113 (7.756)

AT 0.476 (0.102) 0.766 (0.172) 0.059 (0.025) 0.106 (0.182) 0.127 (0.227) 0.154 (0.042) 0.405 (0.133) 124.400 (8.483)

AU 0.491 (0.100) 0.746 (0.157) 0.057 (0.028) 0.112 (0.172) 0.119 (0.228) 0.153 (0.043) 0.435 (0.129) 123.562 (9.116)

BE 0.507 (0.106) 0.718 (0.170) 0.056 (0.029) 0.143 (0.198) 0.165 (0.260) 0.148 (0.045) 0.428 (0.129) 122.783 (8.825)

BG 0.491 (0.101) 0.801 (0.135) 0.062 (0.029) 0.063 (0.123) 0.117 (0.215) 0.159 (0.044) 0.418 (0.131) 124.052 (10.034)

BR 0.509 (0.089) 0.758 (0.148) 0.053 (0.024) 0.114 (0.173) 0.029 (0.112) 0.154 (0.054) 0.478 (0.121) 124.566 (10.589)

CA 0.495 (0.098) 0.736 (0.159) 0.056 (0.028) 0.126 (0.180) 0.117 (0.222) 0.153 (0.048) 0.441 (0.128) 123.161 (8.588)

CH 0.518 (0.106) 0.706 (0.169) 0.053 (0.025) 0.161 (0.197) 0.134 (0.251) 0.142 (0.037) 0.442 (0.140) 122.438 (8.510)

CL 0.495 (0.099) 0.769 (0.136) 0.054 (0.022) 0.091 (0.155) 0.072 (0.170) 0.151 (0.041) 0.455 (0.131) 124.367 (7.929)

CN 0.502 (0.118) 0.643 (0.197) 0.051 (0.041) 0.232 (0.249) 0.153 (0.279) 0.145 (0.074) 0.393 (0.153) 121.190 (13.016)

CO 0.532 (0.097) 0.755 (0.129) 0.050 (0.017) 0.099 (0.154) 0.073 (0.169) 0.142 (0.036) 0.486 (0.141) 123.085 (7.644)

CZ 0.487 (0.097) 0.769 (0.154) 0.057 (0.024) 0.094 (0.166) 0.139 (0.235) 0.157 (0.051) 0.418 (0.137) 123.901 (8.317)

DE 0.502 (0.110) 0.776 (0.154) 0.063 (0.039) 0.094 (0.166) 0.114 (0.227) 0.158 (0.048) 0.445 (0.138) 124.570 (9.937)

DK 0.524 (0.099) 0.701 (0.172) 0.052 (0.026) 0.161 (0.203) 0.107 (0.220) 0.147 (0.059) 0.445 (0.125) 121.128 (8.498)

EE 0.504 (0.095) 0.755 (0.144) 0.056 (0.028) 0.091 (0.151) 0.147 (0.246) 0.147 (0.037) 0.428 (0.124) 124.531 (10.383)

ES 0.514 (0.101) 0.733 (0.163) 0.052 (0.023) 0.141 (0.196) 0.085 (0.194) 0.148 (0.038) 0.474 (0.136) 123.432 (8.257)

FI 0.487 (0.103) 0.806 (0.132) 0.062 (0.032) 0.062 (0.131) 0.122 (0.219) 0.166 (0.042) 0.428 (0.136) 123.707 (8.277)

FR 0.533 (0.113) 0.704 (0.159) 0.057 (0.035) 0.152 (0.193) 0.152 (0.249) 0.144 (0.046) 0.452 (0.145) 120.900 (9.452)

GR 0.473 (0.091) 0.709 (0.161) 0.049 (0.020) 0.124 (0.193) 0.198 (0.267) 0.144 (0.033) 0.397 (0.127) 121.519 (8.147)

HR 0.473 (0.101) 0.752 (0.157) 0.056 (0.026) 0.110 (0.165) 0.158 (0.245) 0.151 (0.038) 0.418 (0.132) 122.991 (8.289)

HU 0.494 (0.116) 0.800 (0.144) 0.064 (0.033) 0.066 (0.140) 0.189 (0.283) 0.162 (0.045) 0.408 (0.146) 124.793 (10.081)

ID 0.510 (0.089) 0.716 (0.165) 0.048 (0.023) 0.150 (0.195) 0.040 (0.144) 0.147 (0.048) 0.448 (0.126) 123.762 (12.311)

IE 0.503 (0.092) 0.696 (0.174) 0.051 (0.024) 0.164 (0.211) 0.120 (0.222) 0.146 (0.040) 0.445 (0.125) 122.503 (8.780)

IN 0.487 (0.104) 0.704 (0.186) 0.053 (0.037) 0.158 (0.234) 0.143 (0.266) 0.145 (0.058) 0.398 (0.134) 121.598 (11.939)

IR 0.455 (0.101) 0.599 (0.215) 0.049 (0.031) 0.278 (0.265) 0.181 (0.281) 0.133 (0.038) 0.298 (0.137) 119.224 (12.176)

IT 0.501 (0.090) 0.705 (0.166) 0.051 (0.023) 0.158 (0.199) 0.085 (0.186) 0.144 (0.036) 0.444 (0.130) 122.752 (8.591)

JP 0.512 (0.102) 0.729 (0.189) 0.056 (0.032) 0.153 (0.220) 0.156 (0.268) 0.153 (0.060) 0.474 (0.159) 123.181 (13.594)

LT 0.477 (0.105) 0.750 (0.154) 0.054 (0.020) 0.097 (0.165) 0.182 (0.264) 0.146 (0.037) 0.393 (0.124) 122.687 (8.250)

LV 0.494 (0.099) 0.730 (0.172) 0.056 (0.033) 0.122 (0.192) 0.158 (0.263) 0.149 (0.046) 0.399 (0.125) 121.961 (12.291)

MX 0.529 (0.091) 0.757 (0.124) 0.051 (0.023) 0.091 (0.145) 0.079 (0.191) 0.146 (0.040) 0.485 (0.130) 124.044 (8.197)

NL 0.518 (0.100) 0.705 (0.171) 0.053 (0.029) 0.154 (0.202) 0.115 (0.235) 0.144 (0.040) 0.446 (0.130) 122.553 (9.230)

NO 0.507 (0.101) 0.710 (0.162) 0.052 (0.024) 0.147 (0.193) 0.117 (0.225) 0.145 (0.037) 0.435 (0.130) 122.500 (8.098)

NZ 0.486 (0.100) 0.771 (0.144) 0.059 (0.026) 0.085 (0.154) 0.136 (0.252) 0.158 (0.044) 0.432 (0.134) 124.857 (9.177)

PL 0.504 (0.102) 0.766 (0.145) 0.065 (0.046) 0.093 (0.155) 0.099 (0.208) 0.154 (0.048) 0.436 (0.137) 122.569 (10.738)

PT 0.478 (0.107) 0.736 (0.178) 0.056 (0.028) 0.129 (0.203) 0.145 (0.241) 0.150 (0.041) 0.407 (0.132) 122.887 (9.709)

RO 0.476 (0.113) 0.720 (0.166) 0.053 (0.023) 0.121 (0.184) 0.224 (0.285) 0.142 (0.034) 0.373 (0.139) 121.389 (7.864)

RS 0.499 (0.119) 0.745 (0.154) 0.059 (0.034) 0.102 (0.167) 0.139 (0.240) 0.151 (0.041) 0.424 (0.143) 121.517 (8.257)

RU 0.485 (0.099) 0.790 (0.146) 0.061 (0.032) 0.071 (0.149) 0.141 (0.247) 0.161 (0.049) 0.415 (0.136) 124.464 (10.373)

SE 0.512 (0.096) 0.725 (0.159) 0.053 (0.028) 0.138 (0.185) 0.115 (0.227) 0.147 (0.036) 0.454 (0.123) 123.027 (7.834)

SK 0.479 (0.103) 0.755 (0.172) 0.064 (0.040) 0.109 (0.178) 0.184 (0.263) 0.156 (0.040) 0.381 (0.136) 122.172 (9.100)

TR 0.498 (0.095) 0.669 (0.184) 0.049 (0.023) 0.199 (0.228) 0.128 (0.238) 0.137 (0.040) 0.398 (0.125) 119.935 (9.252)

UK 0.512 (0.096) 0.723 (0.163) 0.054 (0.027) 0.134 (0.192) 0.110 (0.227) 0.148 (0.041) 0.465 (0.128) 123.424 (9.642)

US 0.507 (0.100) 0.721 (0.163) 0.057 (0.044) 0.140 (0.194) 0.108 (0.221) 0.150 (0.049) 0.461 (0.130) 122.624 (9.813)

VE 0.515 (0.101) 0.777 (0.113) 0.054 (0.022) 0.070 (0.120) 0.082 (0.198) 0.151 (0.042) 0.476 (0.152) 124.961 (10.287)
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to listen to music that has a higher probability of being 
acoustic and that evokes positive emotions, which makes 
sense. At the same time, indulging populations tend to 
prefer lower energy levels in music (correlation of –0.115), 
which hints at a preference for more relaxing music. 
Furthermore, uncertainty avoidance (UA) is positively 
correlated with music energy level (0.116), but negatively 
with acousticness (–0.122). Societies characterized by stiff 
codes and laws therefore tend to prefer more energetic 
music, but lower amounts of acoustic tracks. Also, there 
is a positive correlation between individualism (IDV) and 
acousticness (0.105).

Comparing the acoustic features with the WHR dimen
sions, cf. Table 8, we can only observe two correla tions 
exceeding the threshold. Both relate to the aspect of 
generosity. More precisely, we see a positive correlation 
between generosity and acousticness (0.118), whereas 
a negative one with energy (–0.101). More generous 
populations therefore tend to prefer less energetic 
music, with a more acoustic sound.

8 Conclusion and Future Work
The contributions of this work are twofold: (i) we 
introduced a novel musiccultural user model that jointly 
relies on acoustic song features and culturerelated features 

to describe the user’s musical preferences and cultural 
background and (ii) we proposed a recommender system 
that leverages these features as contextual information. 
Our evaluations based on a dataset comprising more 
than 55,000 users showed that the proposed user 
model is able to outperform models that incorporate 
either solely musical aspects or cultural aspects and the 
evaluated baseline methods (relying on user’s country as 
a proxy for culture, utilizing solely the user’s and track’s 
identifiers). In regard to both recall and precision, we 
show that adding contextual information obtained via 
incorporating audio features of tracks, data extracted 
from the World Happiness Report and Hofstede’s cultural 
dimensions, contributes to improved recommendations 
when compared to the baseline approaches. Particularly, 
we find that a combination of acoustic features of the 
songs a user listened to (describing the individual music 
preferences of a user) and the World Happiness Report as 
a description of the cultural/socioeconomic background 
of the user performs best.

Future work includes extending the user models with 
further data utilized for capturing cultural aspects of 
users (e.g., the Quality of Government dataset (Dahlberg 
et al., 2016)). Moreover, we are particularly interested in 
analyzing the countryspecific influence of each of the 

Table 8: Spearman rankorder correlations between users’ acoustic properties of listening behavior and socioeconomic 
features (WHR). Correlations >0.1 are highlighted in bold face. Statistically significant correlations at p < 0.001 are 
marked with an asterisk (*).

Happiness GDP Social Sup. Life Exp. Freedom Trust Generosity

Danceability 0.035* 0.036* –0.010 0.049* 0.037* 0.051* 0.052*

Energy –0.036* –0.067* 0.056* –0.056* –0.026* –0.033* –0.101*

Speechiness –0.018* –0.007 0.059* –0.017* 0.011 –0.004 –0.067*

Acousticness 0.055* 0.079* –0.046* 0.070* 0.039* 0.048* 0.118*

Instrumentalness –0.031* 0.030* 0.042* 0.040* 0.006 0.001 –0.044*

Liveness 0.005 –0.019* 0.056* –0.030* 0.001 –0.008 –0.048*

Valence 0.071* 0.047* 0.008 0.051* 0.044* 0.064* 0.084*

Tempo 0.004 –0.025* 0.046* –0.015* 0.001 0.003 –0.016*

Table 7: Spearman rankorder correlations between users’ acoustic properties of listening behavior and cultural fea
tures (Hofstede). Correlations >0.1 are highlighted in bold face. Statistically significant correlations at p < 0.001 are 
marked with an asterisk (*).

PD IDV MAS UA LTO IND

Danceability –0.035* 0.044* 0.023* –0.052* –0.024* 0.072*

Energy 0.056* –0.102* –0.014 0.116* 0.076* –0.115*

Speechiness 0.022* –0.034* 0.016* 0.085* 0.065* –0.096*

Acousticness –0.056* 0.105* 0.026* –0.122* –0.086* 0.125*

Instrumentalness –0.012 0.011 –0.029* 0.038* 0.055* –0.055*

Liveness 0.021* –0.042* –0.014 0.059* 0.035* –0.065*

Valence –0.042* 0.059* 0.047* –0.076* –0.063* 0.114*

Tempo 0.009 –0.041* 0.008 0.031* 0.043* –0.025*
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individual features of the proposed user models on the 
overall recommendation performance to get a deeper 
understanding for cohesive features that constitute 
listening patterns. Regarding the representation of both 
the musical preferences and cultural aspects, we plan 
to investigate more sophisticated modeling approaches. 
Particularly regarding the representation of musical 
preferences of users, we believe that, e.g., using Gaussian 
mixture models will allow for a more differentiated 
representation of users and their (possibly diverse and 
broad) preferences. Finally, we aim to transcend the 
country level for our culturebased analyses, e.g., focusing 
on culturally similar users that live in the same cultural 
region (but not necessarily in the same country).

Notes
 1 A listening event is defined as a quintuple <user, artist, 

album, track, timestamp>.
 2 https://www.last.fm.
 3 https://developer.spotify.com/webapi/searchitem/.
 4 https://developer.spotify.com/webapi/getseveral

audiofeatures/.
 5 To foster further research, we provide the dataset at 

https://doi.org/10.5281/zenodo.3477842.
 6 https://www.iso.org/iso3166countrycodes.html.
 7 A description of these features and the API can be 

found at https://developer.spotify.com/webapi/get
severalaudiofeatures/.

 8 https://www.hofstedeinsights.com/models/national
culture/.

 9 http://worldhappiness.report/.
 10 Please note that this distinction between the positive 

and negative class is also utilized by XGBoost for binary 
classification tasks based on logistic regression.
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